File size: 14,069 Bytes
02ea771 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
01/18/2024 19:24:50 - WARNING - llmtuner.model.parser - `ddp_find_unused_parameters` needs to be set as False for LoRA in DDP training. [INFO|training_args.py:1838] 2024-01-18 19:24:50,331 >> PyTorch: setting up devices /home/hangyu5/anaconda3/envs/llama_factory/lib/python3.11/site-packages/transformers/training_args.py:1751: FutureWarning: `--push_to_hub_token` is deprecated and will be removed in version 5 of π€ Transformers. Use `--hub_token` instead. warnings.warn( 01/18/2024 19:24:50 - INFO - llmtuner.model.parser - Process rank: 0, device: cuda:0, n_gpu: 1 distributed training: True, compute dtype: None 01/18/2024 19:24:50 - INFO - llmtuner.model.parser - Training/evaluation parameters Seq2SeqTrainingArguments( _n_gpu=1, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, bf16=False, bf16_full_eval=False, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=0, dataloader_persistent_workers=False, dataloader_pin_memory=True, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=False, ddp_timeout=1800, debug=[], deepspeed=None, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=True, do_train=False, eval_accumulation_steps=None, eval_delay=0, eval_steps=None, evaluation_strategy=IntervalStrategy.NO, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, generation_config=None, generation_max_length=None, generation_num_beams=None, gradient_accumulation_steps=1, gradient_checkpointing=False, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=None, hub_private_repo=False, hub_strategy=HubStrategy.EVERY_SAVE, hub_token=<HUB_TOKEN>, ignore_data_skip=False, include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=5e-05, length_column_name=length, load_best_model_at_end=False, local_rank=0, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=./models/sft/LMCocktail-10.7B-v1-sft-glaive-function-calling-v2-ep1-lora/Predict_20/runs/Jan18_19-24-50_yhyu13fuwuqi, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=500, logging_strategy=IntervalStrategy.STEPS, lr_scheduler_kwargs={}, lr_scheduler_type=SchedulerType.LINEAR, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mp_parameters=, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=OptimizerNames.ADAMW_TORCH, optim_args=None, output_dir=./models/sft/LMCocktail-10.7B-v1-sft-glaive-function-calling-v2-ep1-lora/Predict_20, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=1, per_device_train_batch_size=8, predict_with_generate=True, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=<PUSH_TO_HUB_TOKEN>, ray_scope=last, remove_unused_columns=True, report_to=['tensorboard'], resume_from_checkpoint=None, run_name=./models/sft/LMCocktail-10.7B-v1-sft-glaive-function-calling-v2-ep1-lora/Predict_20, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=500, save_strategy=IntervalStrategy.STEPS, save_total_limit=None, seed=42, skip_memory_metrics=True, sortish_sampler=False, split_batches=False, tf32=None, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_mps_device=False, warmup_ratio=0.0, warmup_steps=0, weight_decay=0.0, ) 01/18/2024 19:24:50 - INFO - llmtuner.data.loader - Loading dataset ./glaive-function-calling-v2-llama-factory-convert/simple-function-calling-v2_converted_2000.json... 01/18/2024 19:24:50 - WARNING - llmtuner.data.utils - Checksum failed: missing SHA-1 hash value in dataset_info.json. Using custom data configuration default-cb85ddec01d455d4 Loading Dataset Infos from /home/hangyu5/anaconda3/envs/llama_factory/lib/python3.11/site-packages/datasets/packaged_modules/json Overwrite dataset info from restored data version if exists. Loading Dataset info from /home/hangyu5/.cache/huggingface/datasets/json/default-cb85ddec01d455d4/0.0.0/8bb11242116d547c741b2e8a1f18598ffdd40a1d4f2a2872c7a28b697434bc96 Found cached dataset json (/home/hangyu5/.cache/huggingface/datasets/json/default-cb85ddec01d455d4/0.0.0/8bb11242116d547c741b2e8a1f18598ffdd40a1d4f2a2872c7a28b697434bc96) Loading Dataset info from /home/hangyu5/.cache/huggingface/datasets/json/default-cb85ddec01d455d4/0.0.0/8bb11242116d547c741b2e8a1f18598ffdd40a1d4f2a2872c7a28b697434bc96 [INFO|tokenization_utils_base.py:2024] 2024-01-18 19:24:51,385 >> loading file tokenizer.model [INFO|tokenization_utils_base.py:2024] 2024-01-18 19:24:51,385 >> loading file added_tokens.json [INFO|tokenization_utils_base.py:2024] 2024-01-18 19:24:51,385 >> loading file special_tokens_map.json [INFO|tokenization_utils_base.py:2024] 2024-01-18 19:24:51,385 >> loading file tokenizer_config.json [INFO|tokenization_utils_base.py:2024] 2024-01-18 19:24:51,385 >> loading file tokenizer.json [INFO|configuration_utils.py:737] 2024-01-18 19:24:51,427 >> loading configuration file Yhyu13/LMCocktail-10.7B-v1/config.json [INFO|configuration_utils.py:802] 2024-01-18 19:24:51,428 >> Model config LlamaConfig { "_name_or_path": "Yhyu13/LMCocktail-10.7B-v1", "architectures": [ "LlamaForCausalLM" ], "attention_bias": false, "attention_dropout": 0.0, "bos_token_id": 1, "eos_token_id": 2, "hidden_act": "silu", "hidden_size": 4096, "initializer_range": 0.02, "intermediate_size": 14336, "max_position_embeddings": 4096, "model_type": "llama", "num_attention_heads": 32, "num_hidden_layers": 48, "num_key_value_heads": 8, "pad_token_id": 2, "pretraining_tp": 1, "rms_norm_eps": 1e-05, "rope_scaling": null, "rope_theta": 10000.0, "tie_word_embeddings": false, "torch_dtype": "float16", "transformers_version": "4.36.2", "use_cache": true, "vocab_size": 32000 } [INFO|modeling_utils.py:3341] 2024-01-18 19:24:51,444 >> loading weights file Yhyu13/LMCocktail-10.7B-v1/model.safetensors.index.json [INFO|modeling_utils.py:1341] 2024-01-18 19:24:51,444 >> Instantiating LlamaForCausalLM model under default dtype torch.float16. [INFO|configuration_utils.py:826] 2024-01-18 19:24:51,445 >> Generate config GenerationConfig { "bos_token_id": 1, "eos_token_id": 2, "pad_token_id": 2 } Loading checkpoint shards: 0%| | 0/5 [00:00<?, ?it/s] Loading checkpoint shards: 20%|ββ | 1/5 [00:00<00:00, 6.36it/s] Loading checkpoint shards: 40%|ββββ | 2/5 [00:00<00:00, 6.36it/s]Yhyu13/LMCocktail-10.7B-v1 Loading checkpoint shards: 60%|ββββββ | 3/5 [00:00<00:00, 6.36it/s] Loading checkpoint shards: 80%|ββββββββ | 4/5 [00:00<00:00, 6.36it/s]Yhyu13/LMCocktail-10.7B-v1 Loading checkpoint shards: 100%|ββββββββββ| 5/5 [00:00<00:00, 6.42it/s] Loading checkpoint shards: 100%|ββββββββββ| 5/5 [00:00<00:00, 6.39it/s] [INFO|modeling_utils.py:4185] 2024-01-18 19:24:52,397 >> All model checkpoint weights were used when initializing LlamaForCausalLM. [INFO|modeling_utils.py:4193] 2024-01-18 19:24:52,397 >> All the weights of LlamaForCausalLM were initialized from the model checkpoint at ./models/LMCocktail-10.7B-v1. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlamaForCausalLM for predictions without further training. [INFO|configuration_utils.py:779] 2024-01-18 19:24:52,400 >> loading configuration file ./models/LMCocktail-10.7B-v1/generation_config.json [INFO|configuration_utils.py:826] 2024-01-18 19:24:52,400 >> Generate config GenerationConfig { "bos_token_id": 1, "eos_token_id": 2, "pad_token_id": 2, "use_cache": false } 01/18/2024 19:24:52 - INFO - llmtuner.model.adapter - Fine-tuning method: LoRA 01/18/2024 19:24:54 - INFO - llmtuner.model.adapter - Merged 1 adapter(s). 01/18/2024 19:24:54 - INFO - llmtuner.model.adapter - Loaded adapter(s): ./models/sft/LMCocktail-10.7B-v1-sft-glaive-function-calling-v2-ep1-lora 01/18/2024 19:24:54 - INFO - llmtuner.model.loader - trainable params: 0 || all params: 10731524096 || trainable%: 0.0000 01/18/2024 19:24:54 - INFO - llmtuner.model.loader - This IS expected that the trainable params is 0 if you are using model for inference only. Running tokenizer on dataset: 0%| | 0/20 [00:00<?, ? examples/s]Caching processed dataset at /home/hangyu5/.cache/huggingface/datasets/json/default-cb85ddec01d455d4/0.0.0/8bb11242116d547c741b2e8a1f18598ffdd40a1d4f2a2872c7a28b697434bc96/cache-700bf363697824f9.arrow Running tokenizer on dataset: 100%|ββββββββββ| 20/20 [00:00<00:00, 529.06 examples/s] [INFO|training_args.py:1838] 2024-01-18 19:24:54,939 >> PyTorch: setting up devices Detected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher. [INFO|trainer.py:3166] 2024-01-18 19:24:57,618 >> ***** Running Prediction ***** [INFO|trainer.py:3168] 2024-01-18 19:24:57,618 >> Num examples = 20 [INFO|trainer.py:3171] 2024-01-18 19:24:57,618 >> Batch size = 1 [INFO|configuration_utils.py:826] 2024-01-18 19:24:57,631 >> Generate config GenerationConfig { "bos_token_id": 1, "eos_token_id": 2, "pad_token_id": 2 } /home/hangyu5/anaconda3/envs/llama_factory/lib/python3.11/site-packages/transformers/generation/utils.py:1518: UserWarning: You have modified the pretrained model configuration to control generation. This is a deprecated strategy to control generation and will be removed soon, in a future version. Please use and modify the model generation configuration (see https://huggingface.co/docs/transformers/generation_strategies#default-text-generation-configuration ) warnings.warn( input_ids: [1, 774, 1247, 28747, 13, 27842, 28747, 995, 460, 264, 10865, 13892, 395, 2735, 298, 272, 2296, 5572, 28723, 5938, 706, 513, 3030, 387, 13, 28751, 13, 2287, 345, 861, 1264, 345, 527, 28730, 720, 4078, 28730, 6036, 548, 13, 2287, 345, 6518, 1264, 345, 1458, 272, 8877, 4338, 1444, 989, 1191, 951, 20023, 548, 13, 2287, 345, 11438, 1264, 371, 13, 5390, 345, 1123, 1264, 345, 2814, 548, 13, 5390, 345, 10723, 1264, 371, 13, 17422, 345, 2893, 28730, 16714, 1264, 371, 13, 1417, 28705, 345, 1123, 1264, 345, 1427, 548, 13, 1417, 28705, 345, 6518, 1264, 345, 1014, 15547, 298, 6603, 477, 28739, 13, 17422, 1630, 13, 17422, 345, 3731, 28730, 16714, 1264, 371, 13, 1417, 28705, 345, 1123, 1264, 345, 1427, 548, 13, 1417, 28705, 345, 6518, 1264, 345, 1014, 15547, 298, 6603, 298, 28739, 13, 17422, 443, 13, 5390, 1630, 13, 5390, 345, 10893, 1264, 733, 13, 17422, 345, 2893, 28730, 16714, 548, 13, 17422, 345, 3731, 28730, 16714, 28739, 13, 5390, 4709, 13, 2287, 443, 13, 28752, 13, 13, 6325, 368, 1820, 264, 9314, 354, 528, 477, 1450, 2726, 298, 4222, 28804, 13, 13, 27332, 21631, 28747, 13] inputs: <s>### User: SYSTEM: You are a helpful assistant with access to the following functions. Use them if required - { "name": "get_exchange_rate", "description": "Get the exchange rate between two currencies", "parameters": { "type": "object", "properties": { "base_currency": { "type": "string", "description": "The currency to convert from" }, "target_currency": { "type": "string", "description": "The currency to convert to" } }, "required": [ "base_currency", "target_currency" ] } } Can you book a flight for me from New York to London? ### Assistant: 0%| | 0/20 [00:00<?, ?it/s] 10%|β | 2/20 [00:01<00:13, 1.31it/s] 15%|ββ | 3/20 [00:04<00:26, 1.56s/it] 20%|ββ | 4/20 [00:05<00:25, 1.60s/it] 25%|βββ | 5/20 [00:09<00:32, 2.16s/it] 30%|βββ | 6/20 [00:10<00:26, 1.87s/it] 35%|ββββ | 7/20 [00:12<00:24, 1.87s/it] 40%|ββββ | 8/20 [00:13<00:21, 1.79s/it] 45%|βββββ | 9/20 [00:15<00:17, 1.62s/it] 50%|βββββ | 10/20 [00:17<00:18, 1.81s/it] 55%|ββββββ | 11/20 [00:18<00:15, 1.75s/it] 60%|ββββββ | 12/20 [00:19<00:12, 1.51s/it] 65%|βββββββ | 13/20 [00:22<00:12, 1.79s/it] 70%|βββββββ | 14/20 [00:23<00:08, 1.50s/it] 75%|ββββββββ | 15/20 [00:26<00:10, 2.07s/it] 80%|ββββββββ | 16/20 [00:27<00:06, 1.74s/it] 85%|βββββββββ | 17/20 [00:29<00:05, 1.79s/it] 90%|βββββββββ | 18/20 [00:31<00:03, 1.99s/it] 95%|ββββββββββ| 19/20 [00:32<00:01, 1.63s/it] 100%|ββββββββββ| 20/20 [00:34<00:00, 1.72s/it]Building prefix dict from the default dictionary ... Loading model from cache /tmp/jieba.cache Loading model cost 0.675 seconds. Prefix dict has been built successfully. 100%|ββββββββββ| 20/20 [00:35<00:00, 1.77s/it] ***** predict metrics ***** predict_bleu-4 = 84.0251 predict_rouge-1 = 88.6553 predict_rouge-2 = 80.2374 predict_rouge-l = 86.4698 predict_runtime = 0:00:37.47 predict_samples_per_second = 0.534 predict_steps_per_second = 0.534 01/18/2024 19:25:35 - INFO - llmtuner.train.sft.trainer - Saving prediction results to ./models/sft/LMCocktail-10.7B-v1-sft-glaive-function-calling-v2-ep1-lora/Predict_20/generated_predictions.jsonl |