--- library_name: transformers license: mit base_model: roberta-large tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: wikidyk-scope-clf-deberta-v3-large-semantic_3_clusters results: [] --- # wikidyk-scope-clf-deberta-v3-large-semantic_3_clusters This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5560 - Accuracy: 0.9132 - F1: 0.7401 - Precision: 0.8592 - Recall: 0.6501 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 128 - total_eval_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0494 | 1.0 | 902 | 0.3398 | 0.8673 | 0.5190 | 0.8346 | 0.3766 | | 0.0428 | 2.0 | 1804 | 0.3267 | 0.8902 | 0.6328 | 0.8696 | 0.4973 | | 0.0292 | 3.0 | 2706 | 0.3243 | 0.9071 | 0.7333 | 0.8077 | 0.6714 | | 0.0208 | 4.0 | 3608 | 0.4366 | 0.8926 | 0.6603 | 0.8284 | 0.5488 | | 0.0096 | 5.0 | 4510 | 0.4438 | 0.8943 | 0.6829 | 0.7948 | 0.5986 | | 0.0182 | 6.0 | 5412 | 0.5225 | 0.8950 | 0.6594 | 0.86 | 0.5346 | | 0.0062 | 7.0 | 6314 | 0.4717 | 0.9078 | 0.7117 | 0.8776 | 0.5986 | | 0.0021 | 8.0 | 7216 | 0.5226 | 0.9095 | 0.7254 | 0.8571 | 0.6288 | | 0.0026 | 9.0 | 8118 | 0.5323 | 0.9173 | 0.7528 | 0.8715 | 0.6625 | | 0.0008 | 10.0 | 9020 | 0.5560 | 0.9132 | 0.7401 | 0.8592 | 0.6501 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1