Xenova HF Staff whitphx HF Staff commited on
Commit
e9c9948
·
verified ·
1 Parent(s): 7f667eb

Add/update the quantized ONNX model files and README.md for Transformers.js v3 (#1)

Browse files

- Add/update the quantized ONNX model files and README.md for Transformers.js v3 (6db941cba2582f4f36fee96898d7b495b77f7759)


Co-authored-by: Yuichiro Tachibana <whitphx@users.noreply.huggingface.co>

README.md CHANGED
@@ -5,4 +5,21 @@ library_name: transformers.js
5
 
6
  https://huggingface.co/microsoft/table-transformer-structure-recognition-v1.1-fin with ONNX weights to be compatible with Transformers.js.
7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
 
5
 
6
  https://huggingface.co/microsoft/table-transformer-structure-recognition-v1.1-fin with ONNX weights to be compatible with Transformers.js.
7
 
8
+ ## Usage (Transformers.js)
9
+
10
+ If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
11
+ ```bash
12
+ npm i @huggingface/transformers
13
+ ```
14
+
15
+ **Example:** Run object-detection.
16
+
17
+ ```js
18
+ import { pipeline } from '@huggingface/transformers';
19
+
20
+ const detector = await pipeline('object-detection', 'Xenova/table-transformer-structure-recognition-v1.1-fin');
21
+ const img = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg';
22
+ const output = await detector(img, { threshold: 0.9 });
23
+ ```
24
+
25
  Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
onnx/model_bnb4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07b02b40828c65747f43b39a89abe347e0a133ce39ad874454d02feb610af959
3
+ size 55854275
onnx/model_q4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65a47f65ce0fd73dc3646333ef35268aec90d34cc00de302771607131d79deea
3
+ size 56943214
onnx/model_q4f16.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a314f0686db406387503ca189c78236d97ace3e0f90e6a589e0deef46fcb49df
3
+ size 33052245
onnx/model_uint8.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebc316a160d4997a26c8cc2c4288f12d766c0eb430d350a7d00c1ae15d66d9df
3
+ size 29742335