Xenova HF Staff whitphx HF Staff commited on
Commit
76c3afa
·
verified ·
1 Parent(s): f72c16b

Add/update the quantized ONNX model files and README.md for Transformers.js v3 (#2)

Browse files

- Add/update the quantized ONNX model files and README.md for Transformers.js v3 (88e97223553ff4f96d90cc7faa76675455f0a1f1)


Co-authored-by: Yuichiro Tachibana <whitphx@users.noreply.huggingface.co>

README.md CHANGED
@@ -5,4 +5,21 @@ library_name: transformers.js
5
 
6
  https://huggingface.co/microsoft/table-transformer-structure-recognition-v1.1-all with ONNX weights to be compatible with Transformers.js.
7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
 
5
 
6
  https://huggingface.co/microsoft/table-transformer-structure-recognition-v1.1-all with ONNX weights to be compatible with Transformers.js.
7
 
8
+ ## Usage (Transformers.js)
9
+
10
+ If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
11
+ ```bash
12
+ npm i @huggingface/transformers
13
+ ```
14
+
15
+ **Example:** Run object-detection.
16
+
17
+ ```js
18
+ import { pipeline } from '@huggingface/transformers';
19
+
20
+ const detector = await pipeline('object-detection', 'Xenova/table-transformer-structure-recognition-v1.1-all');
21
+ const img = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg';
22
+ const output = await detector(img, { threshold: 0.9 });
23
+ ```
24
+
25
  Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
onnx/model_bnb4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ea7cef301af7ac5a826606f0128e860bc28b87eec49333aabf12f038de13277
3
+ size 55854275
onnx/model_q4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e4303d8075bcc0cca006e79c2bb4f511e76aa62d89ce241f565329a8772f299
3
+ size 56943214
onnx/model_q4f16.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51f1b5ef1434531d3ec8de10ddca9715156706621e2262f65b925bd519be5b3a
3
+ size 33052245
onnx/model_uint8.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86bdb04058f4911d55d55d4ed2b8c8e431ec366a8e44c4f672285dd71b6caed0
3
+ size 29742340