|
from .internvideo2_stage2 import InternVideo2_Stage2 as IV2S2 |
|
from transformers import PretrainedConfig, PreTrainedModel, AutoModel, AutoConfig |
|
from .config import InternVideo2Config as config |
|
import warnings |
|
import torch |
|
|
|
warnings.filterwarnings("ignore") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class InternVideo2Stage2VideoEncoder(PreTrainedModel): |
|
config_class = config |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.model = IV2S2(self.config).to('cpu').to(torch.float16) |
|
|
|
def forward(self, x: torch.tensor): |
|
"""forward pass |
|
Args: |
|
x (torch.tensor): Shape (B, N, C, H, W) or (B, C, H, W) |
|
Returns: |
|
torch.tensor: Shape (B*N, hidden_size) or (B, hidden_size) |
|
""" |
|
if len(x.shape) == 5 and x.shape[1] > 8: |
|
|
|
|
|
T = x.shape[1] |
|
embs = torch.cat([self.forward(x[:, i:i+8, :, :, :])for i in range(0, T, 8)], dim=1) |
|
return embs |
|
|
|
image = False |
|
if len(x.shape) == 4: |
|
x = x.unsqueeze(1) |
|
image = True |
|
B, N, C, H, W = x.shape |
|
|
|
output = self.model.encode_vision(x) |
|
pooled_vision_embeds = output[1] |
|
output = pooled_vision_embeds[:, :256*N, :] |
|
output = output.reshape(B, N, 256, -1) |
|
output = output.mean(dim=2) |
|
if image: |
|
output = output.squeeze(1) |
|
return output |
|
|
|
if __name__ == "__main__": |
|
model_config = config() |
|
model = InternVideo2Stage2VideoEncoder(model_config) |
|
x = torch.randn(2, 3, 8, 224, 224, dtype=torch.float16).to(model_config.device) |
|
output = model(x) |