File size: 3,801 Bytes
edf2ce7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import logging
import json
import torch
from torch import nn
from .config import InternVideo2Config, EasyDict
from .internvideo2 import pretrain_internvideo2_1b_patch14_224, pretrain_internvideo2_6b_patch14_224
from transformers.utils import logging
import warnings

warnings.filterwarnings("ignore")

class InternVideo2_Stage2(nn.Module):
    """docstring for InternVideo2_Stage2"""

    def __init__(self, config, is_pretrain=True):
        super(InternVideo2_Stage2, self).__init__()

        # if isinstance(config, InternVideo2Config):
        #     config_str = str(config)
        #     config_str = config_str.replace('InternVideo2Config ', '')            
        #     config_json = json.loads(config_str)
        #     config = EasyDict(config_json)
        #     self.config = config

        self.config = config

        self.is_pretrain = is_pretrain
        self.vision_width = config.model.vision_encoder.clip_embed_dim
        # self.text_width = config.model.text_encoder.d_model
        self.embed_dim = config.model.embed_dim

        # create modules.
        self.vision_encoder = self.build_vision_encoder()
        if config.model.get("freeze_vision", False):
            self.freeze_vision()

        self.vision_proj = nn.Linear(self.vision_width, self.embed_dim)

        self.temp = nn.parameter.Parameter(torch.ones([]) * config.model.temp)
        self.uta_image_only = config.criterion.get('uta_image_only', False)

        # logger.info(f"uta_image_only={self.uta_image_only}")

    def freeze_vision(self):
        """freeze vision encoder"""
        for p in self.vision_encoder.parameters():
            p.requires_grad = False
            
    def no_weight_decay(self):
        ret = {"temp"}
        ret.update(
            {"vision_encoder." + k for k in self.vision_encoder.no_weight_decay()}
        )
        # ret.update(
        #     {"text_encoder." + k for k in self.text_encoder.no_weight_decay()}
        # )

        return ret

    @property
    def dtype(self):
        return self.vision_encoder.patch_embed.proj.weight.dtype

    def encode_vision(self, image):
        """encode image / videos as features.

        Args:
            image (torch.Tensor): The input images. Shape(B, N, C, H, W)
            test (bool): Whether testing.

        Returns: tuple.
            - vision_embeds (torch.Tensor): The output features. Shape: [B,N,C].
            - pooled_vision_embeds (torch.Tensor): The pooled output features. Shape: [B,1,C].
            - student_output (torch.Tensor): The features of alignment. Shape: [K,B,N,C].
            - clip_output (torch.Tensor): The features of clip. Shape: [K,B,N,C].

        """
        T = image.shape[1]
        use_image = True if T == 1 else False
        image = image.permute(0, 2, 1, 3, 4) # [B,N,C,H,W] -> [B,C,N,H,W]
        # whether save temporal dimension
        # keep_temporal=self.config.model.vision_encoder.keep_temporal
        vision_embeds, pooled_vision_embeds, _, _ = self.vision_encoder(
            image, None, use_image)
        return vision_embeds, pooled_vision_embeds

    def build_vision_encoder(self):
        """build vision encoder
        Returns: (vision_encoder, clip_teacher). Each is a `nn.Module`.

        """
        encoder_name = self.config.model.vision_encoder.name
        # logger.info(f"Build vision_encoder: {encoder_name}")
        if encoder_name == 'pretrain_internvideo2_1b_patch14_224':
            vision_encoder = pretrain_internvideo2_1b_patch14_224(self.config.model)
        elif encoder_name == 'pretrain_internvideo2_6b_patch14_224':
            vision_encoder = pretrain_internvideo2_6b_patch14_224(self.config.model)
        else:
            raise ValueError(f"Not implemented: {encoder_name}")        
        return vision_encoder