devon-kindo commited on
Commit
836d062
·
verified ·
1 Parent(s): 48b2b6b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -3
README.md CHANGED
@@ -12,19 +12,100 @@ tags:
12
  - devops
13
  ---
14
 
15
- ![WhiteRabbitNeo](https://huggingface.co/WhiteRabbitNeo/WhiteRabbitNeo-V3-7B/resolve/main/whiterabbitneo-logo-defcon.png)
16
-
17
  <br>
18
 
19
  # WhiteRabbitNeo
20
 
21
- WhiteRabbitNeo is a model series that can be used for offensive and defensive cybersecurity. Access at [whiterabbitneo.com](https://www.whiterabbitneo.com/) or go to [Kindo.ai](https://www.kindo.ai/) to create agents.
 
 
22
 
 
23
 
24
  # Community
25
 
26
  Join us on [Discord](https://discord.gg/8Ynkrcbk92)
27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  # License
29
 
30
  Apache-2.0 + WhiteRabbitNeo Extended Version
 
12
  - devops
13
  ---
14
 
 
 
15
  <br>
16
 
17
  # WhiteRabbitNeo
18
 
19
+ <br>
20
+
21
+ ![WhiteRabbitNeo](https://huggingface.co/WhiteRabbitNeo/WhiteRabbitNeo-V3-7B/resolve/main/whiterabbitneo-logo-defcon.png)
22
 
23
+ WhiteRabbitNeo is a model series that can be used for offensive and defensive cybersecurity. Access at [whiterabbitneo.com](https://www.whiterabbitneo.com/) or go to [Kindo.ai](https://www.kindo.ai/) to create agents.
24
 
25
  # Community
26
 
27
  Join us on [Discord](https://discord.gg/8Ynkrcbk92)
28
 
29
+
30
+ # Technical Overview
31
+
32
+ WhiteRabbitNeo is a finetune of [Qwen2.5-Coder-7B](https://huggingface.co/Qwen/Qwen2.5-Coder-7B/), and inherits the following features:
33
+ - Type: Causal Language Models
34
+ - Training Stage: Pretraining & Post-training
35
+ - Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
36
+ - Number of Parameters: 7.61B
37
+ - Number of Paramaters (Non-Embedding): 6.53B
38
+ - Number of Layers: 28
39
+ - Number of Attention Heads (GQA): 28 for Q and 4 for KV
40
+ - Context Length: Full 131,072 tokens
41
+ - Please refer to [this section](#processing-long-texts) for detailed instructions on how to deploy Qwen2.5 for handling long texts.
42
+
43
+
44
+ ## Requirements
45
+
46
+ We advise you to use the latest version of `transformers`.
47
+
48
+ With `transformers<4.37.0`, you will encounter the following error:
49
+ ```
50
+ KeyError: 'qwen2'
51
+ ```
52
+
53
+ ## Quickstart
54
+
55
+ Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
56
+
57
+ ```python
58
+ from transformers import AutoModelForCausalLM, AutoTokenizer
59
+
60
+ model_name = "WhiteRabbitNeo/WhiteRabbitNeo-V3-7B"
61
+
62
+ model = AutoModelForCausalLM.from_pretrained(
63
+ model_name,
64
+ torch_dtype="auto",
65
+ device_map="auto"
66
+ )
67
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
68
+
69
+ prompt = "write a quick sort algorithm."
70
+ messages = [
71
+ {"role": "system", "content": "You are WhiteRabbitNeo, created by Kindo.ai. You are a helpful assistant that is an expert in Cybersecurity and DevOps."},
72
+ {"role": "user", "content": prompt}
73
+ ]
74
+ text = tokenizer.apply_chat_template(
75
+ messages,
76
+ tokenize=False,
77
+ add_generation_prompt=True
78
+ )
79
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
80
+
81
+ generated_ids = model.generate(
82
+ **model_inputs,
83
+ max_new_tokens=512
84
+ )
85
+ generated_ids = [
86
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
87
+ ]
88
+
89
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
90
+ ```
91
+
92
+ ### Processing Long Texts
93
+
94
+ The current `config.json` is set for context length up to 32,768 tokens.
95
+ To handle extensive inputs exceeding 32,768 tokens, we utilize [YaRN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.
96
+
97
+ For supported frameworks, you could add the following to `config.json` to enable YaRN:
98
+ ```json
99
+ {
100
+ ...,
101
+ "rope_scaling": {
102
+ "factor": 4.0,
103
+ "original_max_position_embeddings": 32768,
104
+ "type": "yarn"
105
+ }
106
+ }
107
+ ```
108
+
109
  # License
110
 
111
  Apache-2.0 + WhiteRabbitNeo Extended Version