--- library_name: transformers pipeline_tag: text-generation tags: - value-guided-search --- # Model Card for Model ID 1.5B value model for guiding DeepSeek CoT: arxiv.org/abs/2505.17373. [Value-Guided Search for Efficient Chain-of-Thought Reasoning](https://huggingface.co/papers/2505.17373) Code: https://github.com/kaiwenw/value-guided-search This model is a `Qwen2ForClassifier` model, a modified version of the Qwen2 model for classification tasks, which is used to guide chain-of-thought reasoning. ## Usage To load the model, you can use the following code snippet: ```python import classifier_lib import torch model_loading_kwargs = dict(attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16, use_cache=False) classifier = classifier_lib.Qwen2ForClassifier.from_pretrained("VGS-AI/DeepSeek-VM-1.5B", **model_loading_kwargs) ``` To apply the model to `input_ids`, you can use the following code snippet: ```python import torch device = torch.device("cuda") # your input_ids input_ids = torch.tensor([151646, 151644, 18, 13, 47238, ...], dtype=torch.long, device=device) attention_mask = torch.ones_like(input_ids) classifier_outputs = classifier(input_ids.unsqueeze(0), attention_mask=attention_mask.unsqueeze(0)) # use last index of the sequence scores = classifier_outputs.success_probs.squeeze(0)[-1].item() ```