Improve model card for Value-Guided Search
Browse filesThis PR improves the model card by:
- Adding a description of the model and its purpose.
- Linking to the paper "Value-Guided Search for Efficient Chain-of-Thought Reasoning".
- Adding a link to the official code repository.
- Adding a code snippet for loading and using the model.
- Updating the `pipeline_tag` to `text-generation`.
- Adding the `value-guided-search` tag.
README.md
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
pipeline_tag: text-
|
4 |
-
tags:
|
|
|
5 |
---
|
6 |
|
7 |
# Model Card for Model ID
|
@@ -10,4 +11,32 @@ tags: []
|
|
10 |
|
11 |
[Value-Guided Search for Efficient Chain-of-Thought Reasoning](https://huggingface.co/papers/2505.17373)
|
12 |
|
13 |
-
Code: https://github.com/VGS-AI/Value-Guided-Search
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
pipeline_tag: text-generation
|
4 |
+
tags:
|
5 |
+
- value-guided-search
|
6 |
---
|
7 |
|
8 |
# Model Card for Model ID
|
|
|
11 |
|
12 |
[Value-Guided Search for Efficient Chain-of-Thought Reasoning](https://huggingface.co/papers/2505.17373)
|
13 |
|
14 |
+
Code: https://github.com/VGS-AI/Value-Guided-Search
|
15 |
+
|
16 |
+
This model is a `Qwen2ForClassifier` model, a modified version of the Qwen2 model for classification tasks, which is used to guide chain-of-thought reasoning.
|
17 |
+
|
18 |
+
## Usage
|
19 |
+
|
20 |
+
To load the model, you can use the following code snippet:
|
21 |
+
|
22 |
+
```python
|
23 |
+
import classifier_lib
|
24 |
+
import torch
|
25 |
+
|
26 |
+
model_loading_kwargs = dict(attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16, use_cache=False)
|
27 |
+
classifier = classifier_lib.Qwen2ForClassifier.from_pretrained("VGS-AI/DeepSeek-VM-1.5B", **model_loading_kwargs)
|
28 |
+
```
|
29 |
+
|
30 |
+
To apply the model to `input_ids`, you can use the following code snippet:
|
31 |
+
|
32 |
+
```python
|
33 |
+
import torch
|
34 |
+
|
35 |
+
device = torch.device("cuda")
|
36 |
+
# your input_ids
|
37 |
+
input_ids = torch.tensor([151646, 151644, 18, 13, 47238, ...], dtype=torch.long, device=device)
|
38 |
+
attention_mask = torch.ones_like(input_ids)
|
39 |
+
classifier_outputs = classifier(input_ids.unsqueeze(0), attention_mask=attention_mask.unsqueeze(0))
|
40 |
+
# use last index of the sequence
|
41 |
+
scores = classifier_outputs.success_probs.squeeze(0)[-1].item()
|
42 |
+
```
|