nielsr HF Staff commited on
Commit
90d9451
·
verified ·
1 Parent(s): 5330902

Improve model card for Value-Guided Search

Browse files

This PR improves the model card by:

- Adding a description of the model and its purpose.
- Linking to the paper "Value-Guided Search for Efficient Chain-of-Thought Reasoning".
- Adding a link to the official code repository.
- Adding a code snippet for loading and using the model.
- Updating the `pipeline_tag` to `text-generation`.
- Adding the `value-guided-search` tag.

Files changed (1) hide show
  1. README.md +32 -3
README.md CHANGED
@@ -1,7 +1,8 @@
1
  ---
2
  library_name: transformers
3
- pipeline_tag: text-classification
4
- tags: []
 
5
  ---
6
 
7
  # Model Card for Model ID
@@ -10,4 +11,32 @@ tags: []
10
 
11
  [Value-Guided Search for Efficient Chain-of-Thought Reasoning](https://huggingface.co/papers/2505.17373)
12
 
13
- Code: https://github.com/VGS-AI/Value-Guided-Search
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ pipeline_tag: text-generation
4
+ tags:
5
+ - value-guided-search
6
  ---
7
 
8
  # Model Card for Model ID
 
11
 
12
  [Value-Guided Search for Efficient Chain-of-Thought Reasoning](https://huggingface.co/papers/2505.17373)
13
 
14
+ Code: https://github.com/VGS-AI/Value-Guided-Search
15
+
16
+ This model is a `Qwen2ForClassifier` model, a modified version of the Qwen2 model for classification tasks, which is used to guide chain-of-thought reasoning.
17
+
18
+ ## Usage
19
+
20
+ To load the model, you can use the following code snippet:
21
+
22
+ ```python
23
+ import classifier_lib
24
+ import torch
25
+
26
+ model_loading_kwargs = dict(attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16, use_cache=False)
27
+ classifier = classifier_lib.Qwen2ForClassifier.from_pretrained("VGS-AI/DeepSeek-VM-1.5B", **model_loading_kwargs)
28
+ ```
29
+
30
+ To apply the model to `input_ids`, you can use the following code snippet:
31
+
32
+ ```python
33
+ import torch
34
+
35
+ device = torch.device("cuda")
36
+ # your input_ids
37
+ input_ids = torch.tensor([151646, 151644, 18, 13, 47238, ...], dtype=torch.long, device=device)
38
+ attention_mask = torch.ones_like(input_ids)
39
+ classifier_outputs = classifier(input_ids.unsqueeze(0), attention_mask=attention_mask.unsqueeze(0))
40
+ # use last index of the sequence
41
+ scores = classifier_outputs.success_probs.squeeze(0)[-1].item()
42
+ ```