Upload 4 files
Browse files- Dataset_Generation_Script.ipynb +563 -0
- Project_benchmarking.ipynb +1773 -0
- budget_dataset.csv +0 -0
- goals_dataset.csv +0 -0
Dataset_Generation_Script.ipynb
ADDED
@@ -0,0 +1,563 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"id": "16fd83c7-9f91-40ab-ac15-57b02a63b7f4",
|
7 |
+
"metadata": {
|
8 |
+
"tags": []
|
9 |
+
},
|
10 |
+
"outputs": [],
|
11 |
+
"source": [
|
12 |
+
"import os\n",
|
13 |
+
"os.environ['HF_HOME'] = \"/scratch/tar3kh/models/cache\"\n",
|
14 |
+
"import torch \n",
|
15 |
+
"\n",
|
16 |
+
"from datasets import load_dataset #datasets is huggingface's dataset package\n",
|
17 |
+
"import matplotlib.pyplot as plt\n",
|
18 |
+
"import numpy as np\n",
|
19 |
+
"import pandas as pd\n",
|
20 |
+
"import PIL"
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "markdown",
|
25 |
+
"id": "f748fb12-da99-4702-bfb2-263e091fee14",
|
26 |
+
"metadata": {},
|
27 |
+
"source": [
|
28 |
+
"## Synthetic Dataset (generating budgets)"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"cell_type": "code",
|
33 |
+
"execution_count": 14,
|
34 |
+
"id": "61502633-b04c-44fd-b39f-7803ef778205",
|
35 |
+
"metadata": {
|
36 |
+
"tags": []
|
37 |
+
},
|
38 |
+
"outputs": [],
|
39 |
+
"source": [
|
40 |
+
"size = 3000\n",
|
41 |
+
"\n",
|
42 |
+
"np.random.seed(60)\n",
|
43 |
+
"Income_Randomizer = np.random.randint(29000,251000, size=size).astype(int)\n",
|
44 |
+
"#print(Income_Randomizer)\n",
|
45 |
+
"np.random.seed(60)\n",
|
46 |
+
"\n",
|
47 |
+
"Rent_Randomizer = np.random.randint(500,2500, size=size).astype(int)\n",
|
48 |
+
"#print(Rent_Randomizer)\n",
|
49 |
+
"np.random.seed(60)\n",
|
50 |
+
"\n",
|
51 |
+
"Car_Randomizer = np.random.randint(200,1000, size=size).astype(int)\n",
|
52 |
+
"#print(Car_Randomizer)\n",
|
53 |
+
"np.random.seed(60)\n",
|
54 |
+
"\n",
|
55 |
+
"Other_Randomizer = np.random.randint(200,600, size=size).astype(int)\n",
|
56 |
+
"#print(Other_Randomizer)\n",
|
57 |
+
"\n",
|
58 |
+
"Example_promtps = []\n",
|
59 |
+
"\n",
|
60 |
+
"for x in range(len(Income_Randomizer)):\n",
|
61 |
+
" Example_promtps.append('I have an income of about ' +\n",
|
62 |
+
" str(Income_Randomizer[x]) +\n",
|
63 |
+
" ' a year and my monthly expenses include ' +\n",
|
64 |
+
" str(Rent_Randomizer[x]) +\n",
|
65 |
+
" ' a month in rent and utilities, a ' +\n",
|
66 |
+
" str(Car_Randomizer[x]) +\n",
|
67 |
+
" ' car payment, $300 in food, and about ' +\n",
|
68 |
+
" str(Other_Randomizer[x]) +\n",
|
69 |
+
" ' a month in other expenses. Using python, can you create for me a budget spreadsheet and export it to excel?')\n",
|
70 |
+
"\n",
|
71 |
+
"#Example_promtps = ['I have an income of about ' + str(Income_Randomizer[0]) + ' a year and my monthly expenses include ' + str(Rent_Randomizer[0]) + ' a month in rent and utilities, a ' + str(Car_Randomizer[0]) + ' car payment, $300 in food, and about ' + str(Other_Randomizer[0]) + ' a month in other expenses. Using python, can you create for me a budget spreadsheet and export it to excel?',]\n",
|
72 |
+
"Example_outputs = []\n",
|
73 |
+
"\n",
|
74 |
+
"for x in range(len(Income_Randomizer)):\n",
|
75 |
+
" Example_outputs.append(''' import pandas as pd\n",
|
76 |
+
"import openpyxl\n",
|
77 |
+
"\n",
|
78 |
+
"# Define income and expenses\n",
|
79 |
+
"annual_income = '''+ str(Income_Randomizer[x])+'''\n",
|
80 |
+
"monthly_income = annual_income / 12\n",
|
81 |
+
"\n",
|
82 |
+
"expenses = {\n",
|
83 |
+
" \"Rent & Utilities\": '''+ str(Rent_Randomizer[x] )+''',\n",
|
84 |
+
" \"Car Payment\": '''+ str(Car_Randomizer[x]) +''',\n",
|
85 |
+
" \"Food\": 300,\n",
|
86 |
+
" \"Other Expenses\": '''+ str(Other_Randomizer[x]) +'''\n",
|
87 |
+
"}\n",
|
88 |
+
"\n",
|
89 |
+
"total_expenses = sum(expenses.values())\n",
|
90 |
+
"net_savings = monthly_income - total_expenses\n",
|
91 |
+
"\n",
|
92 |
+
"# Create DataFrame\n",
|
93 |
+
"budget_data = {\n",
|
94 |
+
" \"Category\": [\"Monthly Income\"] + list(expenses.keys()) + [\"Total Expenses\", \"Net Savings\"],\n",
|
95 |
+
" \"Amount ($)\": [monthly_income] + list(expenses.values()) + [total_expenses, net_savings]\n",
|
96 |
+
"}\n",
|
97 |
+
"\n",
|
98 |
+
"df = pd.DataFrame(budget_data)\n",
|
99 |
+
"\n",
|
100 |
+
"# Save to Excel\n",
|
101 |
+
"file_name = \"budget.xlsx\"\n",
|
102 |
+
"df.to_excel(file_name, index=False, engine='openpyxl')\n",
|
103 |
+
"\n",
|
104 |
+
"print(f\"Budget spreadsheet saved as {file_name}\")''')\n",
|
105 |
+
"\n",
|
106 |
+
"df2 = pd.DataFrame({'question':Example_promtps,\n",
|
107 |
+
" 'response': Example_outputs})\n",
|
108 |
+
"\n"
|
109 |
+
]
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"cell_type": "code",
|
113 |
+
"execution_count": 15,
|
114 |
+
"id": "79e98786-47d7-4a83-943a-7d5484bd4c2c",
|
115 |
+
"metadata": {
|
116 |
+
"tags": []
|
117 |
+
},
|
118 |
+
"outputs": [],
|
119 |
+
"source": [
|
120 |
+
"df2['instruct'] = \"Q: \" + df2['question'] + \"\\n\\nA: \" + \"Lets think step by step.\" + df2['response']\n",
|
121 |
+
"df2['question_1'] = \"Q: \" + df2['question'] + \"\\n\\nA: \" + \"Lets think step by step.\" "
|
122 |
+
]
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"cell_type": "code",
|
126 |
+
"execution_count": 16,
|
127 |
+
"id": "1199470a-790e-4c60-8bb5-15d7b64aa43a",
|
128 |
+
"metadata": {
|
129 |
+
"tags": []
|
130 |
+
},
|
131 |
+
"outputs": [
|
132 |
+
{
|
133 |
+
"data": {
|
134 |
+
"text/html": [
|
135 |
+
"<div>\n",
|
136 |
+
"<style scoped>\n",
|
137 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
138 |
+
" vertical-align: middle;\n",
|
139 |
+
" }\n",
|
140 |
+
"\n",
|
141 |
+
" .dataframe tbody tr th {\n",
|
142 |
+
" vertical-align: top;\n",
|
143 |
+
" }\n",
|
144 |
+
"\n",
|
145 |
+
" .dataframe thead th {\n",
|
146 |
+
" text-align: right;\n",
|
147 |
+
" }\n",
|
148 |
+
"</style>\n",
|
149 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
150 |
+
" <thead>\n",
|
151 |
+
" <tr style=\"text-align: right;\">\n",
|
152 |
+
" <th></th>\n",
|
153 |
+
" <th>question</th>\n",
|
154 |
+
" <th>response</th>\n",
|
155 |
+
" <th>instruct</th>\n",
|
156 |
+
" <th>question_1</th>\n",
|
157 |
+
" </tr>\n",
|
158 |
+
" </thead>\n",
|
159 |
+
" <tbody>\n",
|
160 |
+
" <tr>\n",
|
161 |
+
" <th>0</th>\n",
|
162 |
+
" <td>I have an income of about 162325 a year and m...</td>\n",
|
163 |
+
" <td>import pandas as pd\\nimport openpyxl\\n\\n# Def...</td>\n",
|
164 |
+
" <td>Q: I have an income of about 162325 a year an...</td>\n",
|
165 |
+
" <td>Q: I have an income of about 162325 a year an...</td>\n",
|
166 |
+
" </tr>\n",
|
167 |
+
" <tr>\n",
|
168 |
+
" <th>1</th>\n",
|
169 |
+
" <td>I have an income of about 35543 a year and my...</td>\n",
|
170 |
+
" <td>import pandas as pd\\nimport openpyxl\\n\\n# Def...</td>\n",
|
171 |
+
" <td>Q: I have an income of about 35543 a year and...</td>\n",
|
172 |
+
" <td>Q: I have an income of about 35543 a year and...</td>\n",
|
173 |
+
" </tr>\n",
|
174 |
+
" <tr>\n",
|
175 |
+
" <th>2</th>\n",
|
176 |
+
" <td>I have an income of about 203179 a year and m...</td>\n",
|
177 |
+
" <td>import pandas as pd\\nimport openpyxl\\n\\n# Def...</td>\n",
|
178 |
+
" <td>Q: I have an income of about 203179 a year an...</td>\n",
|
179 |
+
" <td>Q: I have an income of about 203179 a year an...</td>\n",
|
180 |
+
" </tr>\n",
|
181 |
+
" <tr>\n",
|
182 |
+
" <th>3</th>\n",
|
183 |
+
" <td>I have an income of about 197008 a year and m...</td>\n",
|
184 |
+
" <td>import pandas as pd\\nimport openpyxl\\n\\n# Def...</td>\n",
|
185 |
+
" <td>Q: I have an income of about 197008 a year an...</td>\n",
|
186 |
+
" <td>Q: I have an income of about 197008 a year an...</td>\n",
|
187 |
+
" </tr>\n",
|
188 |
+
" <tr>\n",
|
189 |
+
" <th>4</th>\n",
|
190 |
+
" <td>I have an income of about 223681 a year and m...</td>\n",
|
191 |
+
" <td>import pandas as pd\\nimport openpyxl\\n\\n# Def...</td>\n",
|
192 |
+
" <td>Q: I have an income of about 223681 a year an...</td>\n",
|
193 |
+
" <td>Q: I have an income of about 223681 a year an...</td>\n",
|
194 |
+
" </tr>\n",
|
195 |
+
" </tbody>\n",
|
196 |
+
"</table>\n",
|
197 |
+
"</div>"
|
198 |
+
],
|
199 |
+
"text/plain": [
|
200 |
+
" question \\\n",
|
201 |
+
"0 I have an income of about 162325 a year and m... \n",
|
202 |
+
"1 I have an income of about 35543 a year and my... \n",
|
203 |
+
"2 I have an income of about 203179 a year and m... \n",
|
204 |
+
"3 I have an income of about 197008 a year and m... \n",
|
205 |
+
"4 I have an income of about 223681 a year and m... \n",
|
206 |
+
"\n",
|
207 |
+
" response \\\n",
|
208 |
+
"0 import pandas as pd\\nimport openpyxl\\n\\n# Def... \n",
|
209 |
+
"1 import pandas as pd\\nimport openpyxl\\n\\n# Def... \n",
|
210 |
+
"2 import pandas as pd\\nimport openpyxl\\n\\n# Def... \n",
|
211 |
+
"3 import pandas as pd\\nimport openpyxl\\n\\n# Def... \n",
|
212 |
+
"4 import pandas as pd\\nimport openpyxl\\n\\n# Def... \n",
|
213 |
+
"\n",
|
214 |
+
" instruct \\\n",
|
215 |
+
"0 Q: I have an income of about 162325 a year an... \n",
|
216 |
+
"1 Q: I have an income of about 35543 a year and... \n",
|
217 |
+
"2 Q: I have an income of about 203179 a year an... \n",
|
218 |
+
"3 Q: I have an income of about 197008 a year an... \n",
|
219 |
+
"4 Q: I have an income of about 223681 a year an... \n",
|
220 |
+
"\n",
|
221 |
+
" question_1 \n",
|
222 |
+
"0 Q: I have an income of about 162325 a year an... \n",
|
223 |
+
"1 Q: I have an income of about 35543 a year and... \n",
|
224 |
+
"2 Q: I have an income of about 203179 a year an... \n",
|
225 |
+
"3 Q: I have an income of about 197008 a year an... \n",
|
226 |
+
"4 Q: I have an income of about 223681 a year an... "
|
227 |
+
]
|
228 |
+
},
|
229 |
+
"execution_count": 16,
|
230 |
+
"metadata": {},
|
231 |
+
"output_type": "execute_result"
|
232 |
+
}
|
233 |
+
],
|
234 |
+
"source": [
|
235 |
+
"df2.head()"
|
236 |
+
]
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"cell_type": "code",
|
240 |
+
"execution_count": 17,
|
241 |
+
"id": "1b66310d-41e4-4592-8516-b35b635baead",
|
242 |
+
"metadata": {
|
243 |
+
"tags": []
|
244 |
+
},
|
245 |
+
"outputs": [],
|
246 |
+
"source": [
|
247 |
+
"df2.to_csv('budget_dataset.csv', index=False)"
|
248 |
+
]
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"cell_type": "markdown",
|
252 |
+
"id": "2fac1974-19a0-4853-bbe5-9867b57819ce",
|
253 |
+
"metadata": {},
|
254 |
+
"source": [
|
255 |
+
"## Synthetic Dataset (Financial Goals)"
|
256 |
+
]
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"cell_type": "code",
|
260 |
+
"execution_count": 18,
|
261 |
+
"id": "e4d8b755-25ec-472f-a8e4-52d153ff2f46",
|
262 |
+
"metadata": {
|
263 |
+
"tags": []
|
264 |
+
},
|
265 |
+
"outputs": [],
|
266 |
+
"source": [
|
267 |
+
"# datset set up\n",
|
268 |
+
"\n",
|
269 |
+
"size = 3000\n",
|
270 |
+
"\n",
|
271 |
+
"\n",
|
272 |
+
"np.random.seed(60)\n",
|
273 |
+
"short_term_goals = np.random.randint(1000,5000, size=size).astype(int)\n",
|
274 |
+
"\n",
|
275 |
+
"np.random.seed(60)\n",
|
276 |
+
"medium_term_goals = np.random.randint(5000,10000, size=size).astype(int)\n",
|
277 |
+
"\n",
|
278 |
+
"np.random.seed(60)\n",
|
279 |
+
"long_term_goals = np.random.randint(75000,200000, size=size).astype(int)\n",
|
280 |
+
"\n",
|
281 |
+
"# print(short_term_goals)\n",
|
282 |
+
"# print(medium_term_goals)\n",
|
283 |
+
"# print(long_term_goals)\n",
|
284 |
+
"\n",
|
285 |
+
"prompts = []\n",
|
286 |
+
"\n",
|
287 |
+
"for x in range(len(short_term_goals)):\n",
|
288 |
+
" prompts.append('My short term goal is to save for a $' +\n",
|
289 |
+
" str(short_term_goals[x]) +\n",
|
290 |
+
" ' vacation in the next year, my medium term goal is to save for down payment for a new car, around ' +\n",
|
291 |
+
" str(medium_term_goals[x]) +\n",
|
292 |
+
" ' in the next 2 or 3 years, and my long term goal is to save for a down payment for a house around ' +\n",
|
293 |
+
" str(long_term_goals[x]) +\n",
|
294 |
+
" ' in the next ten years, can you help me integrate these goals into my budget as well as where I should store these savings?')\n",
|
295 |
+
"\n",
|
296 |
+
"outputs = []\n",
|
297 |
+
"for x in range(len(short_term_goals)):\n",
|
298 |
+
" outputs.append(''' 1. Short-Term Goal: $'''+ str(short_term_goals[x]) +''' Vacation (1 Year)\n",
|
299 |
+
"Timeline: 12 months\n",
|
300 |
+
"Monthly Savings Needed: '''+ str(short_term_goals[x]) + ''' / 12 = '''+ str((short_term_goals[x]/12).round()) +'''\n",
|
301 |
+
"\n",
|
302 |
+
"Best Storage Option: High-yield savings account (HYSA)\n",
|
303 |
+
"Easy access\n",
|
304 |
+
"Earns some interest\n",
|
305 |
+
"Safe from market fluctuations,\n",
|
306 |
+
"\n",
|
307 |
+
"2. Medium-Term Goal: $'''+ str(medium_term_goals[x]) +''' Car Down Payment (2–3 Years)\n",
|
308 |
+
"Timeline Options:\n",
|
309 |
+
"2 years (24 months) → $''' + str((medium_term_goals[x]/24).round()) + '''/month\n",
|
310 |
+
"3 years (36 months) → $''' + str((medium_term_goals[x]/36).round()) + '''/month\n",
|
311 |
+
"Best Storage Option: HYSA or conservative investment\n",
|
312 |
+
"If comfortable with some risk, a mix of HYSA + conservative investments (e.g., CDs, bond ETFs)\n",
|
313 |
+
"If risk-averse, keep it in an HYSA,\n",
|
314 |
+
"\n",
|
315 |
+
"3. Long-Term Goal: $'''+ str(long_term_goals[x]) +''' House Down Payment (10 Years)\n",
|
316 |
+
"Timeline: 120 months\n",
|
317 |
+
"Monthly Savings Needed: '''+ str(long_term_goals[x]) + ''' / 120 = '''+ str((long_term_goals[x]/120).round()) +''' \n",
|
318 |
+
"\n",
|
319 |
+
"Best Storage Option: Investment account\n",
|
320 |
+
"Given the long time horizon, investing in a mix of index funds (S&P 500, total stock market) + bonds could provide higher returns.\n",
|
321 |
+
"Consider Roth IRA (if eligible) or brokerage account to allow tax-efficient growth.\n",
|
322 |
+
"\n",
|
323 |
+
"Summary of Total Savings Targets:\n",
|
324 |
+
"Total Monthly Savings goal = $''' +str(((short_term_goals[x]/12)+(medium_term_goals[x]/36)+(long_term_goals[x]/120)).round()) +''' - $''' +str(((short_term_goals[x]/12)+(medium_term_goals[x]/24)+(long_term_goals[x]/120)).round()) +'''/month'''\n",
|
325 |
+
" )\n",
|
326 |
+
" \n",
|
327 |
+
"df3 = pd.DataFrame({'question':prompts,\n",
|
328 |
+
" 'response':outputs})"
|
329 |
+
]
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"cell_type": "code",
|
333 |
+
"execution_count": 19,
|
334 |
+
"id": "f7f484a6-5cc5-4a77-a474-1fc921095dc2",
|
335 |
+
"metadata": {
|
336 |
+
"tags": []
|
337 |
+
},
|
338 |
+
"outputs": [],
|
339 |
+
"source": [
|
340 |
+
"df3['instruct'] = \"Q: \" + df3['question'] + \"\\n\\nA: \" + \"Lets think step by step.\" + df3['response']\n",
|
341 |
+
"df3['question_1'] = \"Q: \" + df3['question'] + \"\\n\\nA: \" + \"Lets think step by step.\" "
|
342 |
+
]
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"cell_type": "code",
|
346 |
+
"execution_count": 20,
|
347 |
+
"id": "63d3c1cd-943b-41b3-ab4f-85f11510eeca",
|
348 |
+
"metadata": {
|
349 |
+
"tags": []
|
350 |
+
},
|
351 |
+
"outputs": [
|
352 |
+
{
|
353 |
+
"data": {
|
354 |
+
"text/html": [
|
355 |
+
"<div>\n",
|
356 |
+
"<style scoped>\n",
|
357 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
358 |
+
" vertical-align: middle;\n",
|
359 |
+
" }\n",
|
360 |
+
"\n",
|
361 |
+
" .dataframe tbody tr th {\n",
|
362 |
+
" vertical-align: top;\n",
|
363 |
+
" }\n",
|
364 |
+
"\n",
|
365 |
+
" .dataframe thead th {\n",
|
366 |
+
" text-align: right;\n",
|
367 |
+
" }\n",
|
368 |
+
"</style>\n",
|
369 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
370 |
+
" <thead>\n",
|
371 |
+
" <tr style=\"text-align: right;\">\n",
|
372 |
+
" <th></th>\n",
|
373 |
+
" <th>question</th>\n",
|
374 |
+
" <th>response</th>\n",
|
375 |
+
" <th>instruct</th>\n",
|
376 |
+
" <th>question_1</th>\n",
|
377 |
+
" </tr>\n",
|
378 |
+
" </thead>\n",
|
379 |
+
" <tbody>\n",
|
380 |
+
" <tr>\n",
|
381 |
+
" <th>0</th>\n",
|
382 |
+
" <td>My short term goal is to save for a $3253 vaca...</td>\n",
|
383 |
+
" <td>1. Short-Term Goal: $3253 Vacation (1 Year)\\n...</td>\n",
|
384 |
+
" <td>Q: My short term goal is to save for a $3253 v...</td>\n",
|
385 |
+
" <td>Q: My short term goal is to save for a $3253 v...</td>\n",
|
386 |
+
" </tr>\n",
|
387 |
+
" <tr>\n",
|
388 |
+
" <th>1</th>\n",
|
389 |
+
" <td>My short term goal is to save for a $4137 vaca...</td>\n",
|
390 |
+
" <td>1. Short-Term Goal: $4137 Vacation (1 Year)\\n...</td>\n",
|
391 |
+
" <td>Q: My short term goal is to save for a $4137 v...</td>\n",
|
392 |
+
" <td>Q: My short term goal is to save for a $4137 v...</td>\n",
|
393 |
+
" </tr>\n",
|
394 |
+
" <tr>\n",
|
395 |
+
" <th>2</th>\n",
|
396 |
+
" <td>My short term goal is to save for a $4654 vaca...</td>\n",
|
397 |
+
" <td>1. Short-Term Goal: $4654 Vacation (1 Year)\\n...</td>\n",
|
398 |
+
" <td>Q: My short term goal is to save for a $4654 v...</td>\n",
|
399 |
+
" <td>Q: My short term goal is to save for a $4654 v...</td>\n",
|
400 |
+
" </tr>\n",
|
401 |
+
" <tr>\n",
|
402 |
+
" <th>3</th>\n",
|
403 |
+
" <td>My short term goal is to save for a $2418 vaca...</td>\n",
|
404 |
+
" <td>1. Short-Term Goal: $2418 Vacation (1 Year)\\n...</td>\n",
|
405 |
+
" <td>Q: My short term goal is to save for a $2418 v...</td>\n",
|
406 |
+
" <td>Q: My short term goal is to save for a $2418 v...</td>\n",
|
407 |
+
" </tr>\n",
|
408 |
+
" <tr>\n",
|
409 |
+
" <th>4</th>\n",
|
410 |
+
" <td>My short term goal is to save for a $3447 vaca...</td>\n",
|
411 |
+
" <td>1. Short-Term Goal: $3447 Vacation (1 Year)\\n...</td>\n",
|
412 |
+
" <td>Q: My short term goal is to save for a $3447 v...</td>\n",
|
413 |
+
" <td>Q: My short term goal is to save for a $3447 v...</td>\n",
|
414 |
+
" </tr>\n",
|
415 |
+
" <tr>\n",
|
416 |
+
" <th>5</th>\n",
|
417 |
+
" <td>My short term goal is to save for a $3147 vaca...</td>\n",
|
418 |
+
" <td>1. Short-Term Goal: $3147 Vacation (1 Year)\\n...</td>\n",
|
419 |
+
" <td>Q: My short term goal is to save for a $3147 v...</td>\n",
|
420 |
+
" <td>Q: My short term goal is to save for a $3147 v...</td>\n",
|
421 |
+
" </tr>\n",
|
422 |
+
" <tr>\n",
|
423 |
+
" <th>6</th>\n",
|
424 |
+
" <td>My short term goal is to save for a $1072 vaca...</td>\n",
|
425 |
+
" <td>1. Short-Term Goal: $1072 Vacation (1 Year)\\n...</td>\n",
|
426 |
+
" <td>Q: My short term goal is to save for a $1072 v...</td>\n",
|
427 |
+
" <td>Q: My short term goal is to save for a $1072 v...</td>\n",
|
428 |
+
" </tr>\n",
|
429 |
+
" <tr>\n",
|
430 |
+
" <th>7</th>\n",
|
431 |
+
" <td>My short term goal is to save for a $3169 vaca...</td>\n",
|
432 |
+
" <td>1. Short-Term Goal: $3169 Vacation (1 Year)\\n...</td>\n",
|
433 |
+
" <td>Q: My short term goal is to save for a $3169 v...</td>\n",
|
434 |
+
" <td>Q: My short term goal is to save for a $3169 v...</td>\n",
|
435 |
+
" </tr>\n",
|
436 |
+
" <tr>\n",
|
437 |
+
" <th>8</th>\n",
|
438 |
+
" <td>My short term goal is to save for a $4985 vaca...</td>\n",
|
439 |
+
" <td>1. Short-Term Goal: $4985 Vacation (1 Year)\\n...</td>\n",
|
440 |
+
" <td>Q: My short term goal is to save for a $4985 v...</td>\n",
|
441 |
+
" <td>Q: My short term goal is to save for a $4985 v...</td>\n",
|
442 |
+
" </tr>\n",
|
443 |
+
" <tr>\n",
|
444 |
+
" <th>9</th>\n",
|
445 |
+
" <td>My short term goal is to save for a $3722 vaca...</td>\n",
|
446 |
+
" <td>1. Short-Term Goal: $3722 Vacation (1 Year)\\n...</td>\n",
|
447 |
+
" <td>Q: My short term goal is to save for a $3722 v...</td>\n",
|
448 |
+
" <td>Q: My short term goal is to save for a $3722 v...</td>\n",
|
449 |
+
" </tr>\n",
|
450 |
+
" </tbody>\n",
|
451 |
+
"</table>\n",
|
452 |
+
"</div>"
|
453 |
+
],
|
454 |
+
"text/plain": [
|
455 |
+
" question \\\n",
|
456 |
+
"0 My short term goal is to save for a $3253 vaca... \n",
|
457 |
+
"1 My short term goal is to save for a $4137 vaca... \n",
|
458 |
+
"2 My short term goal is to save for a $4654 vaca... \n",
|
459 |
+
"3 My short term goal is to save for a $2418 vaca... \n",
|
460 |
+
"4 My short term goal is to save for a $3447 vaca... \n",
|
461 |
+
"5 My short term goal is to save for a $3147 vaca... \n",
|
462 |
+
"6 My short term goal is to save for a $1072 vaca... \n",
|
463 |
+
"7 My short term goal is to save for a $3169 vaca... \n",
|
464 |
+
"8 My short term goal is to save for a $4985 vaca... \n",
|
465 |
+
"9 My short term goal is to save for a $3722 vaca... \n",
|
466 |
+
"\n",
|
467 |
+
" response \\\n",
|
468 |
+
"0 1. Short-Term Goal: $3253 Vacation (1 Year)\\n... \n",
|
469 |
+
"1 1. Short-Term Goal: $4137 Vacation (1 Year)\\n... \n",
|
470 |
+
"2 1. Short-Term Goal: $4654 Vacation (1 Year)\\n... \n",
|
471 |
+
"3 1. Short-Term Goal: $2418 Vacation (1 Year)\\n... \n",
|
472 |
+
"4 1. Short-Term Goal: $3447 Vacation (1 Year)\\n... \n",
|
473 |
+
"5 1. Short-Term Goal: $3147 Vacation (1 Year)\\n... \n",
|
474 |
+
"6 1. Short-Term Goal: $1072 Vacation (1 Year)\\n... \n",
|
475 |
+
"7 1. Short-Term Goal: $3169 Vacation (1 Year)\\n... \n",
|
476 |
+
"8 1. Short-Term Goal: $4985 Vacation (1 Year)\\n... \n",
|
477 |
+
"9 1. Short-Term Goal: $3722 Vacation (1 Year)\\n... \n",
|
478 |
+
"\n",
|
479 |
+
" instruct \\\n",
|
480 |
+
"0 Q: My short term goal is to save for a $3253 v... \n",
|
481 |
+
"1 Q: My short term goal is to save for a $4137 v... \n",
|
482 |
+
"2 Q: My short term goal is to save for a $4654 v... \n",
|
483 |
+
"3 Q: My short term goal is to save for a $2418 v... \n",
|
484 |
+
"4 Q: My short term goal is to save for a $3447 v... \n",
|
485 |
+
"5 Q: My short term goal is to save for a $3147 v... \n",
|
486 |
+
"6 Q: My short term goal is to save for a $1072 v... \n",
|
487 |
+
"7 Q: My short term goal is to save for a $3169 v... \n",
|
488 |
+
"8 Q: My short term goal is to save for a $4985 v... \n",
|
489 |
+
"9 Q: My short term goal is to save for a $3722 v... \n",
|
490 |
+
"\n",
|
491 |
+
" question_1 \n",
|
492 |
+
"0 Q: My short term goal is to save for a $3253 v... \n",
|
493 |
+
"1 Q: My short term goal is to save for a $4137 v... \n",
|
494 |
+
"2 Q: My short term goal is to save for a $4654 v... \n",
|
495 |
+
"3 Q: My short term goal is to save for a $2418 v... \n",
|
496 |
+
"4 Q: My short term goal is to save for a $3447 v... \n",
|
497 |
+
"5 Q: My short term goal is to save for a $3147 v... \n",
|
498 |
+
"6 Q: My short term goal is to save for a $1072 v... \n",
|
499 |
+
"7 Q: My short term goal is to save for a $3169 v... \n",
|
500 |
+
"8 Q: My short term goal is to save for a $4985 v... \n",
|
501 |
+
"9 Q: My short term goal is to save for a $3722 v... "
|
502 |
+
]
|
503 |
+
},
|
504 |
+
"execution_count": 20,
|
505 |
+
"metadata": {},
|
506 |
+
"output_type": "execute_result"
|
507 |
+
}
|
508 |
+
],
|
509 |
+
"source": [
|
510 |
+
"df3.head(10)"
|
511 |
+
]
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"cell_type": "code",
|
515 |
+
"execution_count": 21,
|
516 |
+
"id": "2a4deb48-724f-46a4-8e55-4e41f648af6e",
|
517 |
+
"metadata": {
|
518 |
+
"tags": []
|
519 |
+
},
|
520 |
+
"outputs": [],
|
521 |
+
"source": [
|
522 |
+
"df3.to_csv('goals_dataset.csv', index=False)\n"
|
523 |
+
]
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"cell_type": "code",
|
527 |
+
"execution_count": null,
|
528 |
+
"id": "313cd80a-c7be-489c-9c70-30885c7e614a",
|
529 |
+
"metadata": {},
|
530 |
+
"outputs": [],
|
531 |
+
"source": []
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"cell_type": "code",
|
535 |
+
"execution_count": null,
|
536 |
+
"id": "20de1e90-1c13-486a-b5db-09c957622a69",
|
537 |
+
"metadata": {},
|
538 |
+
"outputs": [],
|
539 |
+
"source": []
|
540 |
+
}
|
541 |
+
],
|
542 |
+
"metadata": {
|
543 |
+
"kernelspec": {
|
544 |
+
"display_name": "llm_course_2",
|
545 |
+
"language": "python",
|
546 |
+
"name": "llm_course_2"
|
547 |
+
},
|
548 |
+
"language_info": {
|
549 |
+
"codemirror_mode": {
|
550 |
+
"name": "ipython",
|
551 |
+
"version": 3
|
552 |
+
},
|
553 |
+
"file_extension": ".py",
|
554 |
+
"mimetype": "text/x-python",
|
555 |
+
"name": "python",
|
556 |
+
"nbconvert_exporter": "python",
|
557 |
+
"pygments_lexer": "ipython3",
|
558 |
+
"version": "3.11.11"
|
559 |
+
}
|
560 |
+
},
|
561 |
+
"nbformat": 4,
|
562 |
+
"nbformat_minor": 5
|
563 |
+
}
|
Project_benchmarking.ipynb
ADDED
@@ -0,0 +1,1773 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "ed4a9148-55d8-483f-888d-9939a06873f9",
|
7 |
+
"metadata": {
|
8 |
+
"tags": []
|
9 |
+
},
|
10 |
+
"outputs": [],
|
11 |
+
"source": [
|
12 |
+
"import os\n",
|
13 |
+
"os.environ['HF_HOME'] = \"/scratch/tar3kh/models/cache\"\n",
|
14 |
+
"import torch \n",
|
15 |
+
"from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline\n",
|
16 |
+
"from datasets import load_dataset #datasets is huggingface's dataset package\n",
|
17 |
+
"from peft import get_peft_model, LoraConfig, TaskType\n",
|
18 |
+
"import matplotlib.pyplot as plt\n",
|
19 |
+
"import numpy as np\n",
|
20 |
+
"import pandas as pd\n",
|
21 |
+
"import PIL\n",
|
22 |
+
"\n",
|
23 |
+
"import lm_eval"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": 2,
|
29 |
+
"id": "74f6aba0-fb07-4ba6-b3d5-f63900b3e4f5",
|
30 |
+
"metadata": {
|
31 |
+
"tags": []
|
32 |
+
},
|
33 |
+
"outputs": [
|
34 |
+
{
|
35 |
+
"data": {
|
36 |
+
"application/vnd.jupyter.widget-view+json": {
|
37 |
+
"model_id": "1731e4705d734f3b9f1cab292fcbc9fd",
|
38 |
+
"version_major": 2,
|
39 |
+
"version_minor": 0
|
40 |
+
},
|
41 |
+
"text/plain": [
|
42 |
+
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
43 |
+
]
|
44 |
+
},
|
45 |
+
"metadata": {},
|
46 |
+
"output_type": "display_data"
|
47 |
+
}
|
48 |
+
],
|
49 |
+
"source": [
|
50 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"meta-llama/Llama-3.2-3B-Instruct\")\n",
|
51 |
+
"model = AutoModelForCausalLM.from_pretrained(\"meta-llama/Llama-3.2-3B-Instruct\", device_map = \"auto\", torch_dtype = torch.bfloat16)"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "code",
|
56 |
+
"execution_count": 3,
|
57 |
+
"id": "0cb7397c-bcbe-4637-b973-1d98873d0f8a",
|
58 |
+
"metadata": {
|
59 |
+
"tags": []
|
60 |
+
},
|
61 |
+
"outputs": [],
|
62 |
+
"source": [
|
63 |
+
"task_manager = lm_eval.tasks.TaskManager()"
|
64 |
+
]
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "code",
|
68 |
+
"execution_count": 4,
|
69 |
+
"id": "9ae14b7a-81bb-494c-856c-fa3f3ff0b1f0",
|
70 |
+
"metadata": {
|
71 |
+
"tags": []
|
72 |
+
},
|
73 |
+
"outputs": [
|
74 |
+
{
|
75 |
+
"name": "stderr",
|
76 |
+
"output_type": "stream",
|
77 |
+
"text": [
|
78 |
+
"`pretrained` model kwarg is not of type `str`. Many other model arguments may be ignored. Please do not launch via accelerate or use `parallelize=True` if passing an existing model this way.\n",
|
79 |
+
"Passed an already-initialized model through `pretrained`, assuming single-process call to evaluate() or custom distributed integration\n",
|
80 |
+
"100%|██████████| 30/30 [00:00<00:00, 629.43it/s]\n",
|
81 |
+
"100%|██████████| 30/30 [00:00<00:00, 633.84it/s]\n",
|
82 |
+
"100%|██████████| 30/30 [00:00<00:00, 633.37it/s]\n",
|
83 |
+
"100%|██████████| 30/30 [00:00<00:00, 623.71it/s]\n",
|
84 |
+
"100%|██████████| 30/30 [00:00<00:00, 630.66it/s]\n",
|
85 |
+
"100%|██████████| 30/30 [00:00<00:00, 638.69it/s]\n",
|
86 |
+
"100%|██████████| 30/30 [00:00<00:00, 624.79it/s]\n",
|
87 |
+
"100%|██████████| 30/30 [00:00<00:00, 641.17it/s]\n",
|
88 |
+
"100%|██████████| 30/30 [00:00<00:00, 642.51it/s]\n",
|
89 |
+
"100%|██████████| 30/30 [00:00<00:00, 642.24it/s]\n",
|
90 |
+
"100%|██████████| 30/30 [00:00<00:00, 640.21it/s]\n",
|
91 |
+
"100%|██████████| 30/30 [00:00<00:00, 639.55it/s]\n",
|
92 |
+
"100%|██████████| 30/30 [00:00<00:00, 639.32it/s]\n",
|
93 |
+
"100%|██████████| 30/30 [00:00<00:00, 646.81it/s]\n",
|
94 |
+
"100%|██████████| 30/30 [00:00<00:00, 626.84it/s]\n",
|
95 |
+
"100%|██████████| 30/30 [00:00<00:00, 308.57it/s]\n",
|
96 |
+
"100%|██████████| 30/30 [00:00<00:00, 379.50it/s]\n",
|
97 |
+
"100%|██████████| 30/30 [00:00<00:00, 631.24it/s]\n",
|
98 |
+
"100%|██████████| 30/30 [00:00<00:00, 635.51it/s]\n",
|
99 |
+
"100%|██████████| 30/30 [00:00<00:00, 644.93it/s]\n",
|
100 |
+
"100%|██████████| 30/30 [00:00<00:00, 639.68it/s]\n",
|
101 |
+
"100%|██████████| 30/30 [00:00<00:00, 644.05it/s]\n",
|
102 |
+
"100%|██████████| 30/30 [00:00<00:00, 102.55it/s]\n",
|
103 |
+
"100%|██████████| 30/30 [00:00<00:00, 624.02it/s]\n",
|
104 |
+
"100%|██████████| 30/30 [00:00<00:00, 628.20it/s]\n",
|
105 |
+
"100%|██████████| 30/30 [00:00<00:00, 627.93it/s]\n",
|
106 |
+
"100%|██████████| 30/30 [00:00<00:00, 627.78it/s]\n",
|
107 |
+
"100%|██████████| 30/30 [00:00<00:00, 491.80it/s]\n",
|
108 |
+
"100%|██████████| 30/30 [00:00<00:00, 619.18it/s]\n",
|
109 |
+
"100%|██████████| 30/30 [00:00<00:00, 637.35it/s]\n",
|
110 |
+
"100%|██████████| 30/30 [00:00<00:00, 632.35it/s]\n",
|
111 |
+
"100%|██████████| 30/30 [00:00<00:00, 633.64it/s]\n",
|
112 |
+
"100%|██████████| 30/30 [00:00<00:00, 642.34it/s]\n",
|
113 |
+
"100%|██████████| 30/30 [00:00<00:00, 640.85it/s]\n",
|
114 |
+
"100%|██████████| 30/30 [00:00<00:00, 615.70it/s]\n",
|
115 |
+
"100%|██████████| 30/30 [00:00<00:00, 636.56it/s]\n",
|
116 |
+
"100%|██████████| 30/30 [00:00<00:00, 629.97it/s]\n",
|
117 |
+
"100%|██████████| 30/30 [00:00<00:00, 626.97it/s]\n",
|
118 |
+
"100%|██████████| 30/30 [00:00<00:00, 633.91it/s]\n",
|
119 |
+
"100%|██████████| 30/30 [00:00<00:00, 643.70it/s]\n",
|
120 |
+
"100%|██████████| 30/30 [00:00<00:00, 629.93it/s]\n",
|
121 |
+
"100%|██████████| 30/30 [00:00<00:00, 635.28it/s]\n",
|
122 |
+
"100%|██████████| 30/30 [00:00<00:00, 634.87it/s]\n",
|
123 |
+
"100%|██████████| 30/30 [00:00<00:00, 645.25it/s]\n",
|
124 |
+
"100%|██████████| 30/30 [00:00<00:00, 638.43it/s]\n",
|
125 |
+
"100%|██████████| 30/30 [00:00<00:00, 645.74it/s]\n",
|
126 |
+
"100%|██████████| 30/30 [00:00<00:00, 624.12it/s]\n",
|
127 |
+
"100%|██████████| 30/30 [00:00<00:00, 642.42it/s]\n",
|
128 |
+
"100%|██████████| 30/30 [00:00<00:00, 636.23it/s]\n",
|
129 |
+
"100%|██████████| 30/30 [00:00<00:00, 627.26it/s]\n",
|
130 |
+
"100%|██████████| 30/30 [00:00<00:00, 643.17it/s]\n",
|
131 |
+
"100%|██████████| 30/30 [00:00<00:00, 636.89it/s]\n",
|
132 |
+
"100%|██████████| 30/30 [00:00<00:00, 641.15it/s]\n",
|
133 |
+
"100%|██████████| 30/30 [00:00<00:00, 639.27it/s]\n",
|
134 |
+
"100%|██████████| 30/30 [00:00<00:00, 637.52it/s]\n",
|
135 |
+
"100%|██████████| 30/30 [00:00<00:00, 634.23it/s]\n",
|
136 |
+
"100%|██████████| 30/30 [00:00<00:00, 639.96it/s]\n",
|
137 |
+
"100%|██████████| 30/30 [00:00<00:00, 69.18it/s]\n",
|
138 |
+
"Running loglikelihood requests: 100%|██████████| 6840/6840 [01:08<00:00, 99.56it/s] \n",
|
139 |
+
"Running generate_until requests: 0%| | 0/30 [00:00<?, ?it/s]/scratch/tar3kh/llm_course_2/lib/python3.11/site-packages/transformers/generation/configuration_utils.py:631: UserWarning: `do_sample` is set to `False`. However, `temperature` is set to `0.6` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `temperature`.\n",
|
140 |
+
" warnings.warn(\n",
|
141 |
+
"/scratch/tar3kh/llm_course_2/lib/python3.11/site-packages/transformers/generation/configuration_utils.py:636: UserWarning: `do_sample` is set to `False`. However, `top_p` is set to `0.9` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `top_p`.\n",
|
142 |
+
" warnings.warn(\n",
|
143 |
+
"Running generate_until requests: 100%|██████████| 30/30 [01:49<00:00, 3.66s/it]\n",
|
144 |
+
"fatal: not a git repository (or any parent up to mount point /sfs/gpfs)\n",
|
145 |
+
"Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set).\n"
|
146 |
+
]
|
147 |
+
}
|
148 |
+
],
|
149 |
+
"source": [
|
150 |
+
"\n",
|
151 |
+
"results = lm_eval.simple_evaluate(\n",
|
152 |
+
" model = 'hf',\n",
|
153 |
+
" model_args = {\"pretrained\": model, \"dtype\": \"bfloat16\", \"toeknzier\": tokenizer},\n",
|
154 |
+
" tasks = ['gsm8k_cot', 'mmlu'],\n",
|
155 |
+
" task_manager = task_manager,\n",
|
156 |
+
" log_samples = True, \n",
|
157 |
+
" batch_size = \"1\", \n",
|
158 |
+
" limit = 30, \n",
|
159 |
+
" random_seed = 42)"
|
160 |
+
]
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"cell_type": "code",
|
164 |
+
"execution_count": 5,
|
165 |
+
"id": "f753cc30-d67e-4185-9d41-e56eaafa5dc8",
|
166 |
+
"metadata": {
|
167 |
+
"tags": []
|
168 |
+
},
|
169 |
+
"outputs": [
|
170 |
+
{
|
171 |
+
"data": {
|
172 |
+
"text/plain": [
|
173 |
+
"{'gsm8k_cot': {'alias': 'gsm8k_cot',\n",
|
174 |
+
" 'exact_match,strict-match': np.float64(0.5),\n",
|
175 |
+
" 'exact_match_stderr,strict-match': 0.09284766908852593,\n",
|
176 |
+
" 'exact_match,flexible-extract': np.float64(0.5),\n",
|
177 |
+
" 'exact_match_stderr,flexible-extract': 0.09284766908852593},\n",
|
178 |
+
" 'mmlu': {'acc,none': 0.6111111111111112,\n",
|
179 |
+
" 'acc_stderr,none': np.float64(0.011219896029746483),\n",
|
180 |
+
" 'alias': 'mmlu'},\n",
|
181 |
+
" 'mmlu_humanities': {'acc,none': 0.6435897435897436,\n",
|
182 |
+
" 'acc_stderr,none': np.float64(0.02350521124512561),\n",
|
183 |
+
" 'alias': ' - humanities'},\n",
|
184 |
+
" 'mmlu_formal_logic': {'alias': ' - formal_logic',\n",
|
185 |
+
" 'acc,none': 0.3,\n",
|
186 |
+
" 'acc_stderr,none': 0.0850962943396763},\n",
|
187 |
+
" 'mmlu_high_school_european_history': {'alias': ' - high_school_european_history',\n",
|
188 |
+
" 'acc,none': 0.6666666666666666,\n",
|
189 |
+
" 'acc_stderr,none': 0.08753762190648169},\n",
|
190 |
+
" 'mmlu_high_school_us_history': {'alias': ' - high_school_us_history',\n",
|
191 |
+
" 'acc,none': 0.6333333333333333,\n",
|
192 |
+
" 'acc_stderr,none': 0.08948554539839962},\n",
|
193 |
+
" 'mmlu_high_school_world_history': {'alias': ' - high_school_world_history',\n",
|
194 |
+
" 'acc,none': 0.8,\n",
|
195 |
+
" 'acc_stderr,none': 0.07427813527082075},\n",
|
196 |
+
" 'mmlu_international_law': {'alias': ' - international_law',\n",
|
197 |
+
" 'acc,none': 0.8333333333333334,\n",
|
198 |
+
" 'acc_stderr,none': 0.06920456654478331},\n",
|
199 |
+
" 'mmlu_jurisprudence': {'alias': ' - jurisprudence',\n",
|
200 |
+
" 'acc,none': 0.7,\n",
|
201 |
+
" 'acc_stderr,none': 0.0850962943396763},\n",
|
202 |
+
" 'mmlu_logical_fallacies': {'alias': ' - logical_fallacies',\n",
|
203 |
+
" 'acc,none': 0.6666666666666666,\n",
|
204 |
+
" 'acc_stderr,none': 0.08753762190648169},\n",
|
205 |
+
" 'mmlu_moral_disputes': {'alias': ' - moral_disputes',\n",
|
206 |
+
" 'acc,none': 0.5666666666666667,\n",
|
207 |
+
" 'acc_stderr,none': 0.0920186554465537},\n",
|
208 |
+
" 'mmlu_moral_scenarios': {'alias': ' - moral_scenarios',\n",
|
209 |
+
" 'acc,none': 0.6333333333333333,\n",
|
210 |
+
" 'acc_stderr,none': 0.08948554539839962},\n",
|
211 |
+
" 'mmlu_philosophy': {'alias': ' - philosophy',\n",
|
212 |
+
" 'acc,none': 0.7,\n",
|
213 |
+
" 'acc_stderr,none': 0.08509629433967632},\n",
|
214 |
+
" 'mmlu_prehistory': {'alias': ' - prehistory',\n",
|
215 |
+
" 'acc,none': 0.6,\n",
|
216 |
+
" 'acc_stderr,none': 0.09097176522946843},\n",
|
217 |
+
" 'mmlu_professional_law': {'alias': ' - professional_law',\n",
|
218 |
+
" 'acc,none': 0.43333333333333335,\n",
|
219 |
+
" 'acc_stderr,none': 0.0920186554465537},\n",
|
220 |
+
" 'mmlu_world_religions': {'alias': ' - world_religions',\n",
|
221 |
+
" 'acc,none': 0.8333333333333334,\n",
|
222 |
+
" 'acc_stderr,none': 0.06920456654478328},\n",
|
223 |
+
" 'mmlu_other': {'acc,none': 0.6538461538461539,\n",
|
224 |
+
" 'acc_stderr,none': np.float64(0.02283992657168969),\n",
|
225 |
+
" 'alias': ' - other'},\n",
|
226 |
+
" 'mmlu_business_ethics': {'alias': ' - business_ethics',\n",
|
227 |
+
" 'acc,none': 0.7333333333333333,\n",
|
228 |
+
" 'acc_stderr,none': 0.08211756827352532},\n",
|
229 |
+
" 'mmlu_clinical_knowledge': {'alias': ' - clinical_knowledge',\n",
|
230 |
+
" 'acc,none': 0.6,\n",
|
231 |
+
" 'acc_stderr,none': 0.09097176522946843},\n",
|
232 |
+
" 'mmlu_college_medicine': {'alias': ' - college_medicine',\n",
|
233 |
+
" 'acc,none': 0.6666666666666666,\n",
|
234 |
+
" 'acc_stderr,none': 0.08753762190648168},\n",
|
235 |
+
" 'mmlu_global_facts': {'alias': ' - global_facts',\n",
|
236 |
+
" 'acc,none': 0.3333333333333333,\n",
|
237 |
+
" 'acc_stderr,none': 0.08753762190648168},\n",
|
238 |
+
" 'mmlu_human_aging': {'alias': ' - human_aging',\n",
|
239 |
+
" 'acc,none': 0.4666666666666667,\n",
|
240 |
+
" 'acc_stderr,none': 0.09264111117062017},\n",
|
241 |
+
" 'mmlu_management': {'alias': ' - management',\n",
|
242 |
+
" 'acc,none': 0.8,\n",
|
243 |
+
" 'acc_stderr,none': 0.07427813527082075},\n",
|
244 |
+
" 'mmlu_marketing': {'alias': ' - marketing',\n",
|
245 |
+
" 'acc,none': 0.9333333333333333,\n",
|
246 |
+
" 'acc_stderr,none': 0.046320555585310084},\n",
|
247 |
+
" 'mmlu_medical_genetics': {'alias': ' - medical_genetics',\n",
|
248 |
+
" 'acc,none': 0.7666666666666667,\n",
|
249 |
+
" 'acc_stderr,none': 0.0785403232453173},\n",
|
250 |
+
" 'mmlu_miscellaneous': {'alias': ' - miscellaneous',\n",
|
251 |
+
" 'acc,none': 0.8333333333333334,\n",
|
252 |
+
" 'acc_stderr,none': 0.06920456654478328},\n",
|
253 |
+
" 'mmlu_nutrition': {'alias': ' - nutrition',\n",
|
254 |
+
" 'acc,none': 0.8333333333333334,\n",
|
255 |
+
" 'acc_stderr,none': 0.06920456654478331},\n",
|
256 |
+
" 'mmlu_professional_accounting': {'alias': ' - professional_accounting',\n",
|
257 |
+
" 'acc,none': 0.5,\n",
|
258 |
+
" 'acc_stderr,none': 0.09284766908852593},\n",
|
259 |
+
" 'mmlu_professional_medicine': {'alias': ' - professional_medicine',\n",
|
260 |
+
" 'acc,none': 0.5333333333333333,\n",
|
261 |
+
" 'acc_stderr,none': 0.09264111117062017},\n",
|
262 |
+
" 'mmlu_virology': {'alias': ' - virology',\n",
|
263 |
+
" 'acc,none': 0.5,\n",
|
264 |
+
" 'acc_stderr,none': 0.09284766908852593},\n",
|
265 |
+
" 'mmlu_social_sciences': {'acc,none': 0.6805555555555556,\n",
|
266 |
+
" 'acc_stderr,none': np.float64(0.024243558039781773),\n",
|
267 |
+
" 'alias': ' - social sciences'},\n",
|
268 |
+
" 'mmlu_econometrics': {'alias': ' - econometrics',\n",
|
269 |
+
" 'acc,none': 0.4,\n",
|
270 |
+
" 'acc_stderr,none': 0.09097176522946843},\n",
|
271 |
+
" 'mmlu_high_school_geography': {'alias': ' - high_school_geography',\n",
|
272 |
+
" 'acc,none': 0.7333333333333333,\n",
|
273 |
+
" 'acc_stderr,none': 0.08211756827352532},\n",
|
274 |
+
" 'mmlu_high_school_government_and_politics': {'alias': ' - high_school_government_and_politics',\n",
|
275 |
+
" 'acc,none': 0.8,\n",
|
276 |
+
" 'acc_stderr,none': 0.07427813527082075},\n",
|
277 |
+
" 'mmlu_high_school_macroeconomics': {'alias': ' - high_school_macroeconomics',\n",
|
278 |
+
" 'acc,none': 0.6,\n",
|
279 |
+
" 'acc_stderr,none': 0.09097176522946843},\n",
|
280 |
+
" 'mmlu_high_school_microeconomics': {'alias': ' - high_school_microeconomics',\n",
|
281 |
+
" 'acc,none': 0.6666666666666666,\n",
|
282 |
+
" 'acc_stderr,none': 0.08753762190648169},\n",
|
283 |
+
" 'mmlu_high_school_psychology': {'alias': ' - high_school_psychology',\n",
|
284 |
+
" 'acc,none': 0.8,\n",
|
285 |
+
" 'acc_stderr,none': 0.07427813527082075},\n",
|
286 |
+
" 'mmlu_human_sexuality': {'alias': ' - human_sexuality',\n",
|
287 |
+
" 'acc,none': 0.6666666666666666,\n",
|
288 |
+
" 'acc_stderr,none': 0.08753762190648169},\n",
|
289 |
+
" 'mmlu_professional_psychology': {'alias': ' - professional_psychology',\n",
|
290 |
+
" 'acc,none': 0.7333333333333333,\n",
|
291 |
+
" 'acc_stderr,none': 0.08211756827352529},\n",
|
292 |
+
" 'mmlu_public_relations': {'alias': ' - public_relations',\n",
|
293 |
+
" 'acc,none': 0.6,\n",
|
294 |
+
" 'acc_stderr,none': 0.09097176522946843},\n",
|
295 |
+
" 'mmlu_security_studies': {'alias': ' - security_studies',\n",
|
296 |
+
" 'acc,none': 0.7666666666666667,\n",
|
297 |
+
" 'acc_stderr,none': 0.07854032324531726},\n",
|
298 |
+
" 'mmlu_sociology': {'alias': ' - sociology',\n",
|
299 |
+
" 'acc,none': 0.6,\n",
|
300 |
+
" 'acc_stderr,none': 0.09097176522946843},\n",
|
301 |
+
" 'mmlu_us_foreign_policy': {'alias': ' - us_foreign_policy',\n",
|
302 |
+
" 'acc,none': 0.8,\n",
|
303 |
+
" 'acc_stderr,none': 0.07427813527082075},\n",
|
304 |
+
" 'mmlu_stem': {'acc,none': 0.5157894736842106,\n",
|
305 |
+
" 'acc_stderr,none': np.float64(0.019891342584452104),\n",
|
306 |
+
" 'alias': ' - stem'},\n",
|
307 |
+
" 'mmlu_abstract_algebra': {'alias': ' - abstract_algebra',\n",
|
308 |
+
" 'acc,none': 0.3333333333333333,\n",
|
309 |
+
" 'acc_stderr,none': 0.0875376219064817},\n",
|
310 |
+
" 'mmlu_anatomy': {'alias': ' - anatomy',\n",
|
311 |
+
" 'acc,none': 0.6333333333333333,\n",
|
312 |
+
" 'acc_stderr,none': 0.0894855453983996},\n",
|
313 |
+
" 'mmlu_astronomy': {'alias': ' - astronomy',\n",
|
314 |
+
" 'acc,none': 0.7666666666666667,\n",
|
315 |
+
" 'acc_stderr,none': 0.0785403232453173},\n",
|
316 |
+
" 'mmlu_college_biology': {'alias': ' - college_biology',\n",
|
317 |
+
" 'acc,none': 0.8,\n",
|
318 |
+
" 'acc_stderr,none': 0.07427813527082075},\n",
|
319 |
+
" 'mmlu_college_chemistry': {'alias': ' - college_chemistry',\n",
|
320 |
+
" 'acc,none': 0.4,\n",
|
321 |
+
" 'acc_stderr,none': 0.09097176522946843},\n",
|
322 |
+
" 'mmlu_college_computer_science': {'alias': ' - college_computer_science',\n",
|
323 |
+
" 'acc,none': 0.43333333333333335,\n",
|
324 |
+
" 'acc_stderr,none': 0.0920186554465537},\n",
|
325 |
+
" 'mmlu_college_mathematics': {'alias': ' - college_mathematics',\n",
|
326 |
+
" 'acc,none': 0.43333333333333335,\n",
|
327 |
+
" 'acc_stderr,none': 0.0920186554465537},\n",
|
328 |
+
" 'mmlu_college_physics': {'alias': ' - college_physics',\n",
|
329 |
+
" 'acc,none': 0.36666666666666664,\n",
|
330 |
+
" 'acc_stderr,none': 0.0894855453983996},\n",
|
331 |
+
" 'mmlu_computer_security': {'alias': ' - computer_security',\n",
|
332 |
+
" 'acc,none': 0.6666666666666666,\n",
|
333 |
+
" 'acc_stderr,none': 0.08753762190648168},\n",
|
334 |
+
" 'mmlu_conceptual_physics': {'alias': ' - conceptual_physics',\n",
|
335 |
+
" 'acc,none': 0.6333333333333333,\n",
|
336 |
+
" 'acc_stderr,none': 0.08948554539839962},\n",
|
337 |
+
" 'mmlu_electrical_engineering': {'alias': ' - electrical_engineering',\n",
|
338 |
+
" 'acc,none': 0.5333333333333333,\n",
|
339 |
+
" 'acc_stderr,none': 0.09264111117062017},\n",
|
340 |
+
" 'mmlu_elementary_mathematics': {'alias': ' - elementary_mathematics',\n",
|
341 |
+
" 'acc,none': 0.3333333333333333,\n",
|
342 |
+
" 'acc_stderr,none': 0.0875376219064817},\n",
|
343 |
+
" 'mmlu_high_school_biology': {'alias': ' - high_school_biology',\n",
|
344 |
+
" 'acc,none': 0.7666666666666667,\n",
|
345 |
+
" 'acc_stderr,none': 0.07854032324531729},\n",
|
346 |
+
" 'mmlu_high_school_chemistry': {'alias': ' - high_school_chemistry',\n",
|
347 |
+
" 'acc,none': 0.5666666666666667,\n",
|
348 |
+
" 'acc_stderr,none': 0.0920186554465537},\n",
|
349 |
+
" 'mmlu_high_school_computer_science': {'alias': ' - high_school_computer_science',\n",
|
350 |
+
" 'acc,none': 0.7666666666666667,\n",
|
351 |
+
" 'acc_stderr,none': 0.0785403232453173},\n",
|
352 |
+
" 'mmlu_high_school_mathematics': {'alias': ' - high_school_mathematics',\n",
|
353 |
+
" 'acc,none': 0.26666666666666666,\n",
|
354 |
+
" 'acc_stderr,none': 0.08211756827352526},\n",
|
355 |
+
" 'mmlu_high_school_physics': {'alias': ' - high_school_physics',\n",
|
356 |
+
" 'acc,none': 0.36666666666666664,\n",
|
357 |
+
" 'acc_stderr,none': 0.0894855453983996},\n",
|
358 |
+
" 'mmlu_high_school_statistics': {'alias': ' - high_school_statistics',\n",
|
359 |
+
" 'acc,none': 0.23333333333333334,\n",
|
360 |
+
" 'acc_stderr,none': 0.07854032324531728},\n",
|
361 |
+
" 'mmlu_machine_learning': {'alias': ' - machine_learning',\n",
|
362 |
+
" 'acc,none': 0.5,\n",
|
363 |
+
" 'acc_stderr,none': 0.09284766908852593}}"
|
364 |
+
]
|
365 |
+
},
|
366 |
+
"execution_count": 5,
|
367 |
+
"metadata": {},
|
368 |
+
"output_type": "execute_result"
|
369 |
+
}
|
370 |
+
],
|
371 |
+
"source": [
|
372 |
+
"results['results']"
|
373 |
+
]
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"cell_type": "code",
|
377 |
+
"execution_count": 6,
|
378 |
+
"id": "408c9b77-ddc7-4100-8af3-205da92b8981",
|
379 |
+
"metadata": {
|
380 |
+
"tags": []
|
381 |
+
},
|
382 |
+
"outputs": [],
|
383 |
+
"source": [
|
384 |
+
"# pull in the datasets and prepare them for training\n",
|
385 |
+
"\n",
|
386 |
+
"budget = pd.read_csv(\"budget_dataset.csv\")\n",
|
387 |
+
"goals = pd.read_csv(\"goals_dataset.csv\")\n"
|
388 |
+
]
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"cell_type": "code",
|
392 |
+
"execution_count": 7,
|
393 |
+
"id": "4d2aac10-2e16-45e5-9c28-ecee34823332",
|
394 |
+
"metadata": {
|
395 |
+
"tags": []
|
396 |
+
},
|
397 |
+
"outputs": [],
|
398 |
+
"source": [
|
399 |
+
"budget['instruct_lora'] = budget.apply(\n",
|
400 |
+
" lambda row: f\"Q: {row['question']}\\n\\nA: \",\n",
|
401 |
+
" axis=1\n",
|
402 |
+
")\n",
|
403 |
+
"\n",
|
404 |
+
"goals['instruct_lora'] = goals.apply(\n",
|
405 |
+
" lambda row: f\"Q: {row['question']}\\n\\nA: \",\n",
|
406 |
+
" axis=1\n",
|
407 |
+
")"
|
408 |
+
]
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"cell_type": "code",
|
412 |
+
"execution_count": 8,
|
413 |
+
"id": "699a1799-2eb1-4e3d-92fd-d95e608d0a46",
|
414 |
+
"metadata": {
|
415 |
+
"tags": []
|
416 |
+
},
|
417 |
+
"outputs": [
|
418 |
+
{
|
419 |
+
"data": {
|
420 |
+
"application/vnd.jupyter.widget-view+json": {
|
421 |
+
"model_id": "8228990282024cdcbda7f17c4d8791aa",
|
422 |
+
"version_major": 2,
|
423 |
+
"version_minor": 0
|
424 |
+
},
|
425 |
+
"text/plain": [
|
426 |
+
"Map: 0%| | 0/2500 [00:00<?, ? examples/s]"
|
427 |
+
]
|
428 |
+
},
|
429 |
+
"metadata": {},
|
430 |
+
"output_type": "display_data"
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"data": {
|
434 |
+
"application/vnd.jupyter.widget-view+json": {
|
435 |
+
"model_id": "981eeb5a57cb43d4a957db0cec7255fb",
|
436 |
+
"version_major": 2,
|
437 |
+
"version_minor": 0
|
438 |
+
},
|
439 |
+
"text/plain": [
|
440 |
+
"Map: 0%| | 0/500 [00:00<?, ? examples/s]"
|
441 |
+
]
|
442 |
+
},
|
443 |
+
"metadata": {},
|
444 |
+
"output_type": "display_data"
|
445 |
+
}
|
446 |
+
],
|
447 |
+
"source": [
|
448 |
+
"from datasets import load_dataset, Dataset #datasets is huggingface's dataset package\n",
|
449 |
+
"budget = budget.sample(frac = 1, random_state = 42) # randomly shuffle DF\n",
|
450 |
+
"train_budget = budget[:2500]\n",
|
451 |
+
"val_budget = budget[2500:]\n",
|
452 |
+
"train_budget = Dataset.from_pandas(train_budget)\n",
|
453 |
+
"val_budget = Dataset.from_pandas(val_budget)\n",
|
454 |
+
"train_budget = train_budget.map(lambda samples: tokenizer(samples['instruct']), batched = True)\n",
|
455 |
+
"val_budget = val_budget.map(lambda samples: tokenizer(samples['instruct']), batched = True)"
|
456 |
+
]
|
457 |
+
},
|
458 |
+
{
|
459 |
+
"cell_type": "code",
|
460 |
+
"execution_count": 9,
|
461 |
+
"id": "5771055b-6fd1-4116-8f31-e96bdf6b3f69",
|
462 |
+
"metadata": {
|
463 |
+
"tags": []
|
464 |
+
},
|
465 |
+
"outputs": [
|
466 |
+
{
|
467 |
+
"data": {
|
468 |
+
"application/vnd.jupyter.widget-view+json": {
|
469 |
+
"model_id": "b17dc4834f3541d2b2a23de0fe014e28",
|
470 |
+
"version_major": 2,
|
471 |
+
"version_minor": 0
|
472 |
+
},
|
473 |
+
"text/plain": [
|
474 |
+
"Map: 0%| | 0/2500 [00:00<?, ? examples/s]"
|
475 |
+
]
|
476 |
+
},
|
477 |
+
"metadata": {},
|
478 |
+
"output_type": "display_data"
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"data": {
|
482 |
+
"application/vnd.jupyter.widget-view+json": {
|
483 |
+
"model_id": "6cc811fbe0a94abaab671c32f0078bb6",
|
484 |
+
"version_major": 2,
|
485 |
+
"version_minor": 0
|
486 |
+
},
|
487 |
+
"text/plain": [
|
488 |
+
"Map: 0%| | 0/500 [00:00<?, ? examples/s]"
|
489 |
+
]
|
490 |
+
},
|
491 |
+
"metadata": {},
|
492 |
+
"output_type": "display_data"
|
493 |
+
}
|
494 |
+
],
|
495 |
+
"source": [
|
496 |
+
"goals = goals.sample(frac = 1, random_state = 42) # randomly shuffle DF\n",
|
497 |
+
"train_goals = goals[:2500]\n",
|
498 |
+
"val_goals = goals[2500:]\n",
|
499 |
+
"train_goals = Dataset.from_pandas(train_goals)\n",
|
500 |
+
"val_goals = Dataset.from_pandas(val_goals)\n",
|
501 |
+
"train_goals = train_goals.map(lambda samples: tokenizer(samples['instruct']), batched = True)\n",
|
502 |
+
"val_goals = val_goals.map(lambda samples: tokenizer(samples['instruct']), batched = True)"
|
503 |
+
]
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"cell_type": "code",
|
507 |
+
"execution_count": 10,
|
508 |
+
"id": "a36d39f3-6937-47df-b3da-091dbf8df46e",
|
509 |
+
"metadata": {},
|
510 |
+
"outputs": [],
|
511 |
+
"source": [
|
512 |
+
"# Prepare the model and tokenizer \n",
|
513 |
+
"tokenizer.pad_token = tokenizer.eos_token # set padding token to EOS token\n",
|
514 |
+
"model.config.poad_token_id = tokenizer.pad_token_id # set the padding token for model"
|
515 |
+
]
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"cell_type": "code",
|
519 |
+
"execution_count": 11,
|
520 |
+
"id": "3c846699-fdb9-4c49-aef3-7860cfe80712",
|
521 |
+
"metadata": {
|
522 |
+
"tags": []
|
523 |
+
},
|
524 |
+
"outputs": [
|
525 |
+
{
|
526 |
+
"name": "stderr",
|
527 |
+
"output_type": "stream",
|
528 |
+
"text": [
|
529 |
+
"/scratch/tar3kh/llm_course_2/lib/python3.11/site-packages/transformers/generation/configuration_utils.py:631: UserWarning: `do_sample` is set to `False`. However, `temperature` is set to `0.6` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `temperature`.\n",
|
530 |
+
" warnings.warn(\n",
|
531 |
+
"/scratch/tar3kh/llm_course_2/lib/python3.11/site-packages/transformers/generation/configuration_utils.py:636: UserWarning: `do_sample` is set to `False`. However, `top_p` is set to `0.9` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `top_p`.\n",
|
532 |
+
" warnings.warn(\n",
|
533 |
+
"The attention mask is not set and cannot be inferred from input because pad token is same as eos token. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n"
|
534 |
+
]
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"name": "stdout",
|
538 |
+
"output_type": "stream",
|
539 |
+
"text": [
|
540 |
+
"Q: My short term goal is to save for a $1774 vacation in the next year, my medium term goal is to save for down payment for a new car, around 5227 in the next 2 or 3 years, and my long term goal is to save for a down payment for a house around 151861 in the next ten years, can you help me integrate these goals into my budget as well as where I should store these savings?\n",
|
541 |
+
"\n",
|
542 |
+
"A: 1. Short-term goal: Saving for a vacation in the next year. Allocate a specific amount each month towards this goal. For example, you can set aside $147 per month for 12 months to reach your goal of $1774. You can use a separate savings account specifically for this goal. Consider opening a high-yield savings account or a money market fund to earn interest on your savings.\n",
|
543 |
+
"\n",
|
544 |
+
"2. Medium-term goal: Saving for a down payment on a new car in 2-3 years. Allocate a specific amount each month towards this goal. For example, you can set aside $174 per month for 24-36 months to reach your goal of $5227. You can use a separate savings account specifically for this goal. Consider opening a high-yield savings account or a money market fund to earn interest on your savings.\n",
|
545 |
+
"\n",
|
546 |
+
"3. Long-term goal: Saving for a down payment on a house in 10 years. Allocate a specific amount each month towards this goal. For example, you can set aside $1549 per month for 120 months to reach your goal of $151861. You can use a separate savings account specifically for this goal. Consider opening a high-yield savings account or a money market fund to earn interest on your savings.\n",
|
547 |
+
"\n",
|
548 |
+
"To integrate these goals into your budget, consider the 50/30/20 rule: Allocate 50% of your income towards necessary expenses (housing, utilities, food, transportation, and minimum payments on debts), 30% towards discretionary spending (entertainment, hobbies, travel), and 20% towards saving and debt repayment. You can adjust this ratio based on your individual circumstances.\n",
|
549 |
+
"\n",
|
550 |
+
"To store these savings, consider the following options:\n",
|
551 |
+
"\n",
|
552 |
+
"* High-yield savings account: Earns interest on your savings and is FDIC-insured, making it a low-risk option.\n",
|
553 |
+
"* Money market fund: Earns interest on your savings and provides liquidity, making it a good option for short-term goals.\n",
|
554 |
+
"* Certificates of Deposit (CDs): Earns interest on your savings and provides a fixed return, but you'll need to keep your money locked in the CD for a specified period.\n",
|
555 |
+
"* Individual Retirement Account (IRA): A tax-advantaged account that can be used for long-term savings, but may have penalties for early withdrawal.\n",
|
556 |
+
"\n",
|
557 |
+
"It's essential to review and adjust your budget regularly to ensure you're on track to meet your goals. Consider consulting with a financial advisor to create a personalized plan tailored to your needs and goals.\n"
|
558 |
+
]
|
559 |
+
}
|
560 |
+
],
|
561 |
+
"source": [
|
562 |
+
"formatted_prompt = f\"Q: {val_goals[0]['question']}\\n\\nA: \"\n",
|
563 |
+
"inputs = tokenizer.encode(formatted_prompt, return_tensors = \"pt\").to(model.device)\n",
|
564 |
+
"output = model.generate(inputs, max_new_tokens = 800, pad_token_id = tokenizer.pad_token_id, do_sample = False)\n",
|
565 |
+
"generated_text = tokenizer.decode(output[0], skip_special_tokens = True)\n",
|
566 |
+
"print(generated_text)"
|
567 |
+
]
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"cell_type": "code",
|
571 |
+
"execution_count": 12,
|
572 |
+
"id": "6e1bd005-9f89-4a0b-ac57-cd8f521037e8",
|
573 |
+
"metadata": {
|
574 |
+
"tags": []
|
575 |
+
},
|
576 |
+
"outputs": [
|
577 |
+
{
|
578 |
+
"name": "stdout",
|
579 |
+
"output_type": "stream",
|
580 |
+
"text": [
|
581 |
+
"Q: I have an income of about 53255 a year and my monthly expenses include 2208 a month in rent and utilities, a 700 car payment, $300 in food, and about 205 a month in other expenses. Using python, can you create for me a budget spreadsheet and export it to excel?\n",
|
582 |
+
"\n",
|
583 |
+
"A: Here's a Python script that creates a budget spreadsheet and exports it to Excel:\n",
|
584 |
+
"\n",
|
585 |
+
"```python\n",
|
586 |
+
"import pandas as pd\n",
|
587 |
+
"\n",
|
588 |
+
"# Define your income and expenses\n",
|
589 |
+
"income = 53255\n",
|
590 |
+
"rent_and_utilities = 2208\n",
|
591 |
+
"car_payment = 700\n",
|
592 |
+
"food = 300\n",
|
593 |
+
"other_expenses = 205\n",
|
594 |
+
"\n",
|
595 |
+
"# Calculate your total monthly expenses\n",
|
596 |
+
"total_expenses = rent_and_utilities + car_payment + food + other_expenses\n",
|
597 |
+
"\n",
|
598 |
+
"# Create a dictionary to store your income and expenses\n",
|
599 |
+
"budget = {\n",
|
600 |
+
" 'Income': [income],\n",
|
601 |
+
" 'Fixed Expenses': [rent_and_utilities, car_payment, other_expenses],\n",
|
602 |
+
" 'Variable Expenses': [food],\n",
|
603 |
+
" 'Total Expenses': [total_expenses]\n",
|
604 |
+
"}\n",
|
605 |
+
"\n",
|
606 |
+
"# Create a DataFrame from the dictionary\n",
|
607 |
+
"df = pd.DataFrame(budget)\n",
|
608 |
+
"\n",
|
609 |
+
"# Print the DataFrame\n",
|
610 |
+
"print(df)\n",
|
611 |
+
"\n",
|
612 |
+
"# Export the DataFrame to an Excel file\n",
|
613 |
+
"df.to_excel('budget.xlsx', index=False)\n",
|
614 |
+
"```\n",
|
615 |
+
"\n",
|
616 |
+
"This script will create a budget spreadsheet with the following columns:\n",
|
617 |
+
"\n",
|
618 |
+
"* Income\n",
|
619 |
+
"* Fixed Expenses (including rent and utilities, car payment, and other expenses)\n",
|
620 |
+
"* Variable Expenses (including food)\n",
|
621 |
+
"* Total Expenses\n",
|
622 |
+
"\n",
|
623 |
+
"The script will also export the DataFrame to an Excel file named `budget.xlsx`.\n",
|
624 |
+
"\n",
|
625 |
+
"**Example Output:**\n",
|
626 |
+
"\n",
|
627 |
+
"| Income | Fixed Expenses | Variable Expenses | Total Expenses |\n",
|
628 |
+
"| --- | --- | --- | --- |\n",
|
629 |
+
"| 53255 | 3208 | 300 | 3508 |\n",
|
630 |
+
"\n",
|
631 |
+
"**Tips and Variations:**\n",
|
632 |
+
"\n",
|
633 |
+
"* You can customize the script to include additional income and expenses by adding more columns to the `budget` dictionary and the `df` DataFrame.\n",
|
634 |
+
"* You can also use this script as a starting point to create a more detailed budget spreadsheet by adding more columns and rows to the `df` DataFrame.\n",
|
635 |
+
"* To make the script more user-friendly, you can add a prompt to ask the user to input their income and expenses, and then use those values to populate the `budget` dictionary and the `df` DataFrame.\n",
|
636 |
+
"* To make the script more automated, you can use a scheduling tool like `schedule` to run the script at regular intervals and update the budget spreadsheet accordingly.\n"
|
637 |
+
]
|
638 |
+
}
|
639 |
+
],
|
640 |
+
"source": [
|
641 |
+
"formatted_prompt = f\"Q: {val_budget[0]['question']}\\n\\nA: \"\n",
|
642 |
+
"inputs = tokenizer.encode(formatted_prompt, return_tensors = \"pt\").to(model.device)\n",
|
643 |
+
"output = model.generate(inputs, max_new_tokens = 800, pad_token_id = tokenizer.pad_token_id, do_sample = False)\n",
|
644 |
+
"generated_text = tokenizer.decode(output[0], skip_special_tokens = True)\n",
|
645 |
+
"print(generated_text)"
|
646 |
+
]
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"cell_type": "code",
|
650 |
+
"execution_count": 13,
|
651 |
+
"id": "0ac9a8ce-4fa0-4630-b4d5-2a1fe19029ad",
|
652 |
+
"metadata": {
|
653 |
+
"tags": []
|
654 |
+
},
|
655 |
+
"outputs": [],
|
656 |
+
"source": [
|
657 |
+
"del model\n",
|
658 |
+
"torch.cuda.empty_cache()"
|
659 |
+
]
|
660 |
+
},
|
661 |
+
{
|
662 |
+
"cell_type": "code",
|
663 |
+
"execution_count": 14,
|
664 |
+
"id": "b637a1dc-5de4-434f-a199-488121e4fc92",
|
665 |
+
"metadata": {
|
666 |
+
"tags": []
|
667 |
+
},
|
668 |
+
"outputs": [
|
669 |
+
{
|
670 |
+
"name": "stderr",
|
671 |
+
"output_type": "stream",
|
672 |
+
"text": [
|
673 |
+
"You are using the default legacy behaviour of the <class 'transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast'>. This is expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it means, and thoroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565 - if you loaded a llama tokenizer from a GGUF file you can ignore this message.\n"
|
674 |
+
]
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"data": {
|
678 |
+
"application/vnd.jupyter.widget-view+json": {
|
679 |
+
"model_id": "e7367950b76e48d78fe4ea8adcc11321",
|
680 |
+
"version_major": 2,
|
681 |
+
"version_minor": 0
|
682 |
+
},
|
683 |
+
"text/plain": [
|
684 |
+
"Loading checkpoint shards: 0%| | 0/4 [00:00<?, ?it/s]"
|
685 |
+
]
|
686 |
+
},
|
687 |
+
"metadata": {},
|
688 |
+
"output_type": "display_data"
|
689 |
+
}
|
690 |
+
],
|
691 |
+
"source": [
|
692 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"mistralai/Ministral-8B-Instruct-2410\")\n",
|
693 |
+
"model = AutoModelForCausalLM.from_pretrained(\"mistralai/Ministral-8B-Instruct-2410\", device_map = \"auto\", torch_dtype = torch.bfloat16)"
|
694 |
+
]
|
695 |
+
},
|
696 |
+
{
|
697 |
+
"cell_type": "code",
|
698 |
+
"execution_count": 15,
|
699 |
+
"id": "ad7349d5-e70d-4684-a85b-9bd937161805",
|
700 |
+
"metadata": {},
|
701 |
+
"outputs": [],
|
702 |
+
"source": [
|
703 |
+
"# Prepare the model and tokenizer \n",
|
704 |
+
"tokenizer.pad_token = tokenizer.eos_token # set padding token to EOS token\n",
|
705 |
+
"model.config.poad_token_id = tokenizer.pad_token_id # set the padding token for model"
|
706 |
+
]
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"cell_type": "code",
|
710 |
+
"execution_count": 16,
|
711 |
+
"id": "aea53718-1062-41c7-87a9-d96ac3fc13e3",
|
712 |
+
"metadata": {
|
713 |
+
"tags": []
|
714 |
+
},
|
715 |
+
"outputs": [
|
716 |
+
{
|
717 |
+
"name": "stderr",
|
718 |
+
"output_type": "stream",
|
719 |
+
"text": [
|
720 |
+
"`pretrained` model kwarg is not of type `str`. Many other model arguments may be ignored. Please do not launch via accelerate or use `parallelize=True` if passing an existing model this way.\n",
|
721 |
+
"Passed an already-initialized model through `pretrained`, assuming single-process call to evaluate() or custom distributed integration\n",
|
722 |
+
"100%|██████████| 30/30 [00:00<00:00, 597.42it/s]\n",
|
723 |
+
"100%|██████████| 30/30 [00:00<00:00, 624.61it/s]\n",
|
724 |
+
"100%|██████████| 30/30 [00:00<00:00, 629.97it/s]\n",
|
725 |
+
"100%|██████████| 30/30 [00:00<00:00, 628.70it/s]\n",
|
726 |
+
"100%|██████████| 30/30 [00:00<00:00, 632.95it/s]\n",
|
727 |
+
"100%|██████████| 30/30 [00:00<00:00, 625.95it/s]\n",
|
728 |
+
"100%|██████████| 30/30 [00:00<00:00, 639.59it/s]\n",
|
729 |
+
"100%|████���█████| 30/30 [00:00<00:00, 639.62it/s]\n",
|
730 |
+
"100%|██████████| 30/30 [00:00<00:00, 632.55it/s]\n",
|
731 |
+
"100%|██████████| 30/30 [00:00<00:00, 638.64it/s]\n",
|
732 |
+
"100%|██████████| 30/30 [00:00<00:00, 618.78it/s]\n",
|
733 |
+
"100%|██████████| 30/30 [00:00<00:00, 633.69it/s]\n",
|
734 |
+
"100%|██████████| 30/30 [00:00<00:00, 622.05it/s]\n",
|
735 |
+
"100%|██████████| 30/30 [00:00<00:00, 627.75it/s]\n",
|
736 |
+
"100%|██████████| 30/30 [00:00<00:00, 446.39it/s]\n",
|
737 |
+
"100%|██████████| 30/30 [00:00<00:00, 610.02it/s]\n",
|
738 |
+
"100%|██████████| 30/30 [00:00<00:00, 617.17it/s]\n",
|
739 |
+
"100%|██████████| 30/30 [00:00<00:00, 622.85it/s]\n",
|
740 |
+
"100%|██████████| 30/30 [00:00<00:00, 612.45it/s]\n",
|
741 |
+
"100%|██████████| 30/30 [00:00<00:00, 612.01it/s]\n",
|
742 |
+
"100%|██████████| 30/30 [00:00<00:00, 621.72it/s]\n",
|
743 |
+
"100%|██████████| 30/30 [00:00<00:00, 621.97it/s]\n",
|
744 |
+
"100%|██████████| 30/30 [00:00<00:00, 624.63it/s]\n",
|
745 |
+
"100%|██████████| 30/30 [00:00<00:00, 626.03it/s]\n",
|
746 |
+
"100%|██████████| 30/30 [00:00<00:00, 636.17it/s]\n",
|
747 |
+
"100%|██████████| 30/30 [00:00<00:00, 626.13it/s]\n",
|
748 |
+
"100%|██████████| 30/30 [00:00<00:00, 626.59it/s]\n",
|
749 |
+
"100%|██████████| 30/30 [00:00<00:00, 640.30it/s]\n",
|
750 |
+
"100%|██████████| 30/30 [00:00<00:00, 637.37it/s]\n",
|
751 |
+
"100%|██████████| 30/30 [00:00<00:00, 639.40it/s]\n",
|
752 |
+
"100%|██████████| 30/30 [00:00<00:00, 629.62it/s]\n",
|
753 |
+
"100%|██████████| 30/30 [00:00<00:00, 632.29it/s]\n",
|
754 |
+
"100%|██████████| 30/30 [00:00<00:00, 452.92it/s]\n",
|
755 |
+
"100%|██████████| 30/30 [00:00<00:00, 622.28it/s]\n",
|
756 |
+
"100%|██████████| 30/30 [00:00<00:00, 639.87it/s]\n",
|
757 |
+
"100%|██████████| 30/30 [00:00<00:00, 624.62it/s]\n",
|
758 |
+
"100%|██████████| 30/30 [00:00<00:00, 631.57it/s]\n",
|
759 |
+
"100%|██████████| 30/30 [00:00<00:00, 639.24it/s]\n",
|
760 |
+
"100%|██████████| 30/30 [00:00<00:00, 637.52it/s]\n",
|
761 |
+
"100%|██████████| 30/30 [00:00<00:00, 639.20it/s]\n",
|
762 |
+
"100%|██████████| 30/30 [00:00<00:00, 640.64it/s]\n",
|
763 |
+
"100%|██████████| 30/30 [00:00<00:00, 629.27it/s]\n",
|
764 |
+
"100%|██████████| 30/30 [00:00<00:00, 628.75it/s]\n",
|
765 |
+
"100%|██████████| 30/30 [00:00<00:00, 619.60it/s]\n",
|
766 |
+
"100%|██████████| 30/30 [00:00<00:00, 638.59it/s]\n",
|
767 |
+
"100%|██████████| 30/30 [00:00<00:00, 629.08it/s]\n",
|
768 |
+
"100%|██████████| 30/30 [00:00<00:00, 331.37it/s]\n",
|
769 |
+
"100%|██████████| 30/30 [00:00<00:00, 287.76it/s]\n",
|
770 |
+
"100%|██████████| 30/30 [00:00<00:00, 427.76it/s]\n",
|
771 |
+
"100%|██████████| 30/30 [00:00<00:00, 634.93it/s]\n",
|
772 |
+
"100%|██████████| 30/30 [00:00<00:00, 621.34it/s]\n",
|
773 |
+
"100%|██████████| 30/30 [00:00<00:00, 626.57it/s]\n",
|
774 |
+
"100%|██████████| 30/30 [00:00<00:00, 627.44it/s]\n",
|
775 |
+
"100%|██████████| 30/30 [00:00<00:00, 619.38it/s]\n",
|
776 |
+
"100%|██████████| 30/30 [00:00<00:00, 621.84it/s]\n",
|
777 |
+
"100%|██████████| 30/30 [00:00<00:00, 629.56it/s]\n",
|
778 |
+
"100%|██████████| 30/30 [00:00<00:00, 623.88it/s]\n",
|
779 |
+
"100%|██████████| 30/30 [00:00<00:00, 71.09it/s]\n",
|
780 |
+
"Running loglikelihood requests: 100%|██████████| 6840/6840 [01:30<00:00, 75.91it/s]\n",
|
781 |
+
"Running generate_until requests: 100%|██████████| 30/30 [02:34<00:00, 5.15s/it]\n",
|
782 |
+
"fatal: not a git repository (or any parent up to mount point /sfs/gpfs)\n",
|
783 |
+
"Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set).\n"
|
784 |
+
]
|
785 |
+
}
|
786 |
+
],
|
787 |
+
"source": [
|
788 |
+
"\n",
|
789 |
+
"results2 = lm_eval.simple_evaluate(\n",
|
790 |
+
" model = 'hf',\n",
|
791 |
+
" model_args = {\"pretrained\": model, \"dtype\": \"bfloat16\", \"toeknzier\": tokenizer},\n",
|
792 |
+
" tasks = ['gsm8k_cot', 'mmlu'],\n",
|
793 |
+
" task_manager = task_manager,\n",
|
794 |
+
" log_samples = True, \n",
|
795 |
+
" batch_size = \"1\", \n",
|
796 |
+
" limit = 30, \n",
|
797 |
+
" random_seed = 42)"
|
798 |
+
]
|
799 |
+
},
|
800 |
+
{
|
801 |
+
"cell_type": "code",
|
802 |
+
"execution_count": 17,
|
803 |
+
"id": "dd0bd94d-5195-4203-a868-558ea77dfb32",
|
804 |
+
"metadata": {
|
805 |
+
"tags": []
|
806 |
+
},
|
807 |
+
"outputs": [
|
808 |
+
{
|
809 |
+
"data": {
|
810 |
+
"text/plain": [
|
811 |
+
"{'gsm8k_cot': {'alias': 'gsm8k_cot',\n",
|
812 |
+
" 'exact_match,strict-match': np.float64(0.6666666666666666),\n",
|
813 |
+
" 'exact_match_stderr,strict-match': 0.08753762190648169,\n",
|
814 |
+
" 'exact_match,flexible-extract': np.float64(0.7),\n",
|
815 |
+
" 'exact_match_stderr,flexible-extract': 0.0850962943396763},\n",
|
816 |
+
" 'mmlu': {'acc,none': 0.6450292397660818,\n",
|
817 |
+
" 'acc_stderr,none': np.float64(0.011026946921383438),\n",
|
818 |
+
" 'alias': 'mmlu'},\n",
|
819 |
+
" 'mmlu_humanities': {'acc,none': 0.6666666666666666,\n",
|
820 |
+
" 'acc_stderr,none': np.float64(0.022655549762135505),\n",
|
821 |
+
" 'alias': ' - humanities'},\n",
|
822 |
+
" 'mmlu_formal_logic': {'alias': ' - formal_logic',\n",
|
823 |
+
" 'acc,none': 0.5,\n",
|
824 |
+
" 'acc_stderr,none': 0.09284766908852593},\n",
|
825 |
+
" 'mmlu_high_school_european_history': {'alias': ' - high_school_european_history',\n",
|
826 |
+
" 'acc,none': 0.6333333333333333,\n",
|
827 |
+
" 'acc_stderr,none': 0.08948554539839962},\n",
|
828 |
+
" 'mmlu_high_school_us_history': {'alias': ' - high_school_us_history',\n",
|
829 |
+
" 'acc,none': 0.8,\n",
|
830 |
+
" 'acc_stderr,none': 0.07427813527082075},\n",
|
831 |
+
" 'mmlu_high_school_world_history': {'alias': ' - high_school_world_history',\n",
|
832 |
+
" 'acc,none': 0.8,\n",
|
833 |
+
" 'acc_stderr,none': 0.07427813527082075},\n",
|
834 |
+
" 'mmlu_international_law': {'alias': ' - international_law',\n",
|
835 |
+
" 'acc,none': 0.8666666666666667,\n",
|
836 |
+
" 'acc_stderr,none': 0.06312427686319994},\n",
|
837 |
+
" 'mmlu_jurisprudence': {'alias': ' - jurisprudence',\n",
|
838 |
+
" 'acc,none': 0.7666666666666667,\n",
|
839 |
+
" 'acc_stderr,none': 0.07854032324531729},\n",
|
840 |
+
" 'mmlu_logical_fallacies': {'alias': ' - logical_fallacies',\n",
|
841 |
+
" 'acc,none': 0.8,\n",
|
842 |
+
" 'acc_stderr,none': 0.07427813527082075},\n",
|
843 |
+
" 'mmlu_moral_disputes': {'alias': ' - moral_disputes',\n",
|
844 |
+
" 'acc,none': 0.6,\n",
|
845 |
+
" 'acc_stderr,none': 0.09097176522946843},\n",
|
846 |
+
" 'mmlu_moral_scenarios': {'alias': ' - moral_scenarios',\n",
|
847 |
+
" 'acc,none': 0.26666666666666666,\n",
|
848 |
+
" 'acc_stderr,none': 0.0821175682735253},\n",
|
849 |
+
" 'mmlu_philosophy': {'alias': ' - philosophy',\n",
|
850 |
+
" 'acc,none': 0.7,\n",
|
851 |
+
" 'acc_stderr,none': 0.08509629433967632},\n",
|
852 |
+
" 'mmlu_prehistory': {'alias': ' - prehistory',\n",
|
853 |
+
" 'acc,none': 0.5333333333333333,\n",
|
854 |
+
" 'acc_stderr,none': 0.09264111117062017},\n",
|
855 |
+
" 'mmlu_professional_law': {'alias': ' - professional_law',\n",
|
856 |
+
" 'acc,none': 0.5333333333333333,\n",
|
857 |
+
" 'acc_stderr,none': 0.09264111117062017},\n",
|
858 |
+
" 'mmlu_world_religions': {'alias': ' - world_religions',\n",
|
859 |
+
" 'acc,none': 0.8666666666666667,\n",
|
860 |
+
" 'acc_stderr,none': 0.06312427686319991},\n",
|
861 |
+
" 'mmlu_other': {'acc,none': 0.6820512820512821,\n",
|
862 |
+
" 'acc_stderr,none': np.float64(0.02296366746299997),\n",
|
863 |
+
" 'alias': ' - other'},\n",
|
864 |
+
" 'mmlu_business_ethics': {'alias': ' - business_ethics',\n",
|
865 |
+
" 'acc,none': 0.8,\n",
|
866 |
+
" 'acc_stderr,none': 0.07427813527082075},\n",
|
867 |
+
" 'mmlu_clinical_knowledge': {'alias': ' - clinical_knowledge',\n",
|
868 |
+
" 'acc,none': 0.6,\n",
|
869 |
+
" 'acc_stderr,none': 0.09097176522946843},\n",
|
870 |
+
" 'mmlu_college_medicine': {'alias': ' - college_medicine',\n",
|
871 |
+
" 'acc,none': 0.6,\n",
|
872 |
+
" 'acc_stderr,none': 0.09097176522946843},\n",
|
873 |
+
" 'mmlu_global_facts': {'alias': ' - global_facts',\n",
|
874 |
+
" 'acc,none': 0.43333333333333335,\n",
|
875 |
+
" 'acc_stderr,none': 0.0920186554465537},\n",
|
876 |
+
" 'mmlu_human_aging': {'alias': ' - human_aging',\n",
|
877 |
+
" 'acc,none': 0.6333333333333333,\n",
|
878 |
+
" 'acc_stderr,none': 0.08948554539839962},\n",
|
879 |
+
" 'mmlu_management': {'alias': ' - management',\n",
|
880 |
+
" 'acc,none': 0.7333333333333333,\n",
|
881 |
+
" 'acc_stderr,none': 0.0821175682735253},\n",
|
882 |
+
" 'mmlu_marketing': {'alias': ' - marketing',\n",
|
883 |
+
" 'acc,none': 0.8666666666666667,\n",
|
884 |
+
" 'acc_stderr,none': 0.06312427686319994},\n",
|
885 |
+
" 'mmlu_medical_genetics': {'alias': ' - medical_genetics',\n",
|
886 |
+
" 'acc,none': 0.7666666666666667,\n",
|
887 |
+
" 'acc_stderr,none': 0.0785403232453173},\n",
|
888 |
+
" 'mmlu_miscellaneous': {'alias': ' - miscellaneous',\n",
|
889 |
+
" 'acc,none': 0.8,\n",
|
890 |
+
" 'acc_stderr,none': 0.07427813527082075},\n",
|
891 |
+
" 'mmlu_nutrition': {'alias': ' - nutrition',\n",
|
892 |
+
" 'acc,none': 0.9,\n",
|
893 |
+
" 'acc_stderr,none': 0.055708601453115535},\n",
|
894 |
+
" 'mmlu_professional_accounting': {'alias': ' - professional_accounting',\n",
|
895 |
+
" 'acc,none': 0.5666666666666667,\n",
|
896 |
+
" 'acc_stderr,none': 0.0920186554465537},\n",
|
897 |
+
" 'mmlu_professional_medicine': {'alias': ' - professional_medicine',\n",
|
898 |
+
" 'acc,none': 0.6333333333333333,\n",
|
899 |
+
" 'acc_stderr,none': 0.08948554539839962},\n",
|
900 |
+
" 'mmlu_virology': {'alias': ' - virology',\n",
|
901 |
+
" 'acc,none': 0.5333333333333333,\n",
|
902 |
+
" 'acc_stderr,none': 0.09264111117062017},\n",
|
903 |
+
" 'mmlu_social_sciences': {'acc,none': 0.7166666666666667,\n",
|
904 |
+
" 'acc_stderr,none': np.float64(0.023102765218675773),\n",
|
905 |
+
" 'alias': ' - social sciences'},\n",
|
906 |
+
" 'mmlu_econometrics': {'alias': ' - econometrics',\n",
|
907 |
+
" 'acc,none': 0.43333333333333335,\n",
|
908 |
+
" 'acc_stderr,none': 0.0920186554465537},\n",
|
909 |
+
" 'mmlu_high_school_geography': {'alias': ' - high_school_geography',\n",
|
910 |
+
" 'acc,none': 0.7666666666666667,\n",
|
911 |
+
" 'acc_stderr,none': 0.07854032324531726},\n",
|
912 |
+
" 'mmlu_high_school_government_and_politics': {'alias': ' - high_school_government_and_politics',\n",
|
913 |
+
" 'acc,none': 0.8666666666666667,\n",
|
914 |
+
" 'acc_stderr,none': 0.06312427686319991},\n",
|
915 |
+
" 'mmlu_high_school_macroeconomics': {'alias': ' - high_school_macroeconomics',\n",
|
916 |
+
" 'acc,none': 0.5333333333333333,\n",
|
917 |
+
" 'acc_stderr,none': 0.09264111117062017},\n",
|
918 |
+
" 'mmlu_high_school_microeconomics': {'alias': ' - high_school_microeconomics',\n",
|
919 |
+
" 'acc,none': 0.7333333333333333,\n",
|
920 |
+
" 'acc_stderr,none': 0.08211756827352532},\n",
|
921 |
+
" 'mmlu_high_school_psychology': {'alias': ' - high_school_psychology',\n",
|
922 |
+
" 'acc,none': 0.7333333333333333,\n",
|
923 |
+
" 'acc_stderr,none': 0.0821175682735253},\n",
|
924 |
+
" 'mmlu_human_sexuality': {'alias': ' - human_sexuality',\n",
|
925 |
+
" 'acc,none': 0.8333333333333334,\n",
|
926 |
+
" 'acc_stderr,none': 0.06920456654478331},\n",
|
927 |
+
" 'mmlu_professional_psychology': {'alias': ' - professional_psychology',\n",
|
928 |
+
" 'acc,none': 0.7,\n",
|
929 |
+
" 'acc_stderr,none': 0.08509629433967632},\n",
|
930 |
+
" 'mmlu_public_relations': {'alias': ' - public_relations',\n",
|
931 |
+
" 'acc,none': 0.6,\n",
|
932 |
+
" 'acc_stderr,none': 0.09097176522946843},\n",
|
933 |
+
" 'mmlu_security_studies': {'alias': ' - security_studies',\n",
|
934 |
+
" 'acc,none': 0.8,\n",
|
935 |
+
" 'acc_stderr,none': 0.07427813527082075},\n",
|
936 |
+
" 'mmlu_sociology': {'alias': ' - sociology',\n",
|
937 |
+
" 'acc,none': 0.7,\n",
|
938 |
+
" 'acc_stderr,none': 0.0850962943396763},\n",
|
939 |
+
" 'mmlu_us_foreign_policy': {'alias': ' - us_foreign_policy',\n",
|
940 |
+
" 'acc,none': 0.9,\n",
|
941 |
+
" 'acc_stderr,none': 0.055708601453115555},\n",
|
942 |
+
" 'mmlu_stem': {'acc,none': 0.5596491228070175,\n",
|
943 |
+
" 'acc_stderr,none': np.float64(0.019856630503018412),\n",
|
944 |
+
" 'alias': ' - stem'},\n",
|
945 |
+
" 'mmlu_abstract_algebra': {'alias': ' - abstract_algebra',\n",
|
946 |
+
" 'acc,none': 0.4,\n",
|
947 |
+
" 'acc_stderr,none': 0.09097176522946843},\n",
|
948 |
+
" 'mmlu_anatomy': {'alias': ' - anatomy',\n",
|
949 |
+
" 'acc,none': 0.5666666666666667,\n",
|
950 |
+
" 'acc_stderr,none': 0.0920186554465537},\n",
|
951 |
+
" 'mmlu_astronomy': {'alias': ' - astronomy',\n",
|
952 |
+
" 'acc,none': 0.7666666666666667,\n",
|
953 |
+
" 'acc_stderr,none': 0.0785403232453173},\n",
|
954 |
+
" 'mmlu_college_biology': {'alias': ' - college_biology',\n",
|
955 |
+
" 'acc,none': 0.9,\n",
|
956 |
+
" 'acc_stderr,none': 0.055708601453115555},\n",
|
957 |
+
" 'mmlu_college_chemistry': {'alias': ' - college_chemistry',\n",
|
958 |
+
" 'acc,none': 0.4,\n",
|
959 |
+
" 'acc_stderr,none': 0.09097176522946843},\n",
|
960 |
+
" 'mmlu_college_computer_science': {'alias': ' - college_computer_science',\n",
|
961 |
+
" 'acc,none': 0.5666666666666667,\n",
|
962 |
+
" 'acc_stderr,none': 0.0920186554465537},\n",
|
963 |
+
" 'mmlu_college_mathematics': {'alias': ' - college_mathematics',\n",
|
964 |
+
" 'acc,none': 0.4,\n",
|
965 |
+
" 'acc_stderr,none': 0.09097176522946843},\n",
|
966 |
+
" 'mmlu_college_physics': {'alias': ' - college_physics',\n",
|
967 |
+
" 'acc,none': 0.36666666666666664,\n",
|
968 |
+
" 'acc_stderr,none': 0.0894855453983996},\n",
|
969 |
+
" 'mmlu_computer_security': {'alias': ' - computer_security',\n",
|
970 |
+
" 'acc,none': 0.7,\n",
|
971 |
+
" 'acc_stderr,none': 0.0850962943396763},\n",
|
972 |
+
" 'mmlu_conceptual_physics': {'alias': ' - conceptual_physics',\n",
|
973 |
+
" 'acc,none': 0.5333333333333333,\n",
|
974 |
+
" 'acc_stderr,none': 0.09264111117062017},\n",
|
975 |
+
" 'mmlu_electrical_engineering': {'alias': ' - electrical_engineering',\n",
|
976 |
+
" 'acc,none': 0.6,\n",
|
977 |
+
" 'acc_stderr,none': 0.09097176522946843},\n",
|
978 |
+
" 'mmlu_elementary_mathematics': {'alias': ' - elementary_mathematics',\n",
|
979 |
+
" 'acc,none': 0.5,\n",
|
980 |
+
" 'acc_stderr,none': 0.09284766908852593},\n",
|
981 |
+
" 'mmlu_high_school_biology': {'alias': ' - high_school_biology',\n",
|
982 |
+
" 'acc,none': 0.8,\n",
|
983 |
+
" 'acc_stderr,none': 0.07427813527082075},\n",
|
984 |
+
" 'mmlu_high_school_chemistry': {'alias': ' - high_school_chemistry',\n",
|
985 |
+
" 'acc,none': 0.5666666666666667,\n",
|
986 |
+
" 'acc_stderr,none': 0.0920186554465537},\n",
|
987 |
+
" 'mmlu_high_school_computer_science': {'alias': ' - high_school_computer_science',\n",
|
988 |
+
" 'acc,none': 0.8333333333333334,\n",
|
989 |
+
" 'acc_stderr,none': 0.06920456654478328},\n",
|
990 |
+
" 'mmlu_high_school_mathematics': {'alias': ' - high_school_mathematics',\n",
|
991 |
+
" 'acc,none': 0.3,\n",
|
992 |
+
" 'acc_stderr,none': 0.0850962943396763},\n",
|
993 |
+
" 'mmlu_high_school_physics': {'alias': ' - high_school_physics',\n",
|
994 |
+
" 'acc,none': 0.4,\n",
|
995 |
+
" 'acc_stderr,none': 0.09097176522946843},\n",
|
996 |
+
" 'mmlu_high_school_statistics': {'alias': ' - high_school_statistics',\n",
|
997 |
+
" 'acc,none': 0.6333333333333333,\n",
|
998 |
+
" 'acc_stderr,none': 0.08948554539839962},\n",
|
999 |
+
" 'mmlu_machine_learning': {'alias': ' - machine_learning',\n",
|
1000 |
+
" 'acc,none': 0.4,\n",
|
1001 |
+
" 'acc_stderr,none': 0.09097176522946843}}"
|
1002 |
+
]
|
1003 |
+
},
|
1004 |
+
"execution_count": 17,
|
1005 |
+
"metadata": {},
|
1006 |
+
"output_type": "execute_result"
|
1007 |
+
}
|
1008 |
+
],
|
1009 |
+
"source": [
|
1010 |
+
"results2['results']"
|
1011 |
+
]
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"cell_type": "code",
|
1015 |
+
"execution_count": 18,
|
1016 |
+
"id": "3220c534-873e-485b-9ce7-6069d64c0510",
|
1017 |
+
"metadata": {
|
1018 |
+
"tags": []
|
1019 |
+
},
|
1020 |
+
"outputs": [
|
1021 |
+
{
|
1022 |
+
"name": "stdout",
|
1023 |
+
"output_type": "stream",
|
1024 |
+
"text": [
|
1025 |
+
"Q: My short term goal is to save for a $1774 vacation in the next year, my medium term goal is to save for down payment for a new car, around 5227 in the next 2 or 3 years, and my long term goal is to save for a down payment for a house around 151861 in the next ten years, can you help me integrate these goals into my budget as well as where I should store these savings?\n",
|
1026 |
+
"\n",
|
1027 |
+
"A: 1. **Budgeting for Savings:**\n",
|
1028 |
+
"\n",
|
1029 |
+
" - **Short Term (Vacation):**\n",
|
1030 |
+
" - Allocate a specific amount each month towards your vacation fund. For example, if you save $148 per month, you'll reach your goal in 12 months.\n",
|
1031 |
+
" - Consider setting up an automatic transfer from your checking account to your savings account each month.\n",
|
1032 |
+
"\n",
|
1033 |
+
" - **Medium Term (Car Down Payment):**\n",
|
1034 |
+
" - Allocate a specific amount each month towards your car down payment. For example, if you save $436 per month, you'll reach your goal in 2 years.\n",
|
1035 |
+
" - Consider setting up an automatic transfer from your checking account to your savings account each month.\n",
|
1036 |
+
"\n",
|
1037 |
+
" - **Long Term (House Down Payment):**\n",
|
1038 |
+
" - Allocate a specific amount each month towards your house down payment. For example, if you save $1265 per month, you'll reach your goal in 10 years.\n",
|
1039 |
+
" - Consider setting up an automatic transfer from your checking account to your savings account each month.\n",
|
1040 |
+
"\n",
|
1041 |
+
"2. **Where to Store Your Savings:**\n",
|
1042 |
+
"\n",
|
1043 |
+
" - **Short Term (Vacation):**\n",
|
1044 |
+
" - Consider a high-yield savings account or a money market account. These accounts offer easy access to your funds and typically have no or low fees.\n",
|
1045 |
+
"\n",
|
1046 |
+
" - **Medium Term (Car Down Payment):**\n",
|
1047 |
+
" - Consider a high-yield savings account or a certificate of deposit (CD). CDs offer a fixed interest rate and can be a good option if you don't need to access your funds for a few years.\n",
|
1048 |
+
"\n",
|
1049 |
+
" - **Long Term (House Down Payment):**\n",
|
1050 |
+
" - Consider a high-yield savings account, a CD, or a retirement account like a Roth IRA. If you're eligible, a Roth IRA offers tax-free growth and withdrawals, which can be beneficial for long-term savings.\n",
|
1051 |
+
"\n",
|
1052 |
+
"3. **Additional Tips:**\n",
|
1053 |
+
"\n",
|
1054 |
+
" - **Emergency Fund:** Before focusing on your savings goals, ensure you have an emergency fund set aside (ideally 3-6 months' worth of living expenses). This can help protect you from unexpected expenses or job loss.\n",
|
1055 |
+
"\n",
|
1056 |
+
" - **Review and Adjust:** Regularly review your budget and savings progress. Life changes and unexpected expenses can impact your savings goals, so it's important to stay flexible and adjust your plan as needed.\n",
|
1057 |
+
"\n",
|
1058 |
+
" - **Increase Your Income:** Consider ways to increase your income, such as taking on a side job, selling unwanted items, or negotiating a raise. This can help you reach your savings goals faster.\n",
|
1059 |
+
"\n",
|
1060 |
+
" - **Track Your Progress:** Use a budgeting app or spreadsheet to track your savings progress. Seeing your progress can motivate you to stay on track and reach your goals.\n"
|
1061 |
+
]
|
1062 |
+
}
|
1063 |
+
],
|
1064 |
+
"source": [
|
1065 |
+
"formatted_prompt = f\"Q: {val_goals[0]['question']}\\n\\nA: \"\n",
|
1066 |
+
"inputs = tokenizer.encode(formatted_prompt, return_tensors = \"pt\").to(model.device)\n",
|
1067 |
+
"output = model.generate(inputs, max_new_tokens = 800, pad_token_id = tokenizer.pad_token_id, do_sample = False)\n",
|
1068 |
+
"generated_text = tokenizer.decode(output[0], skip_special_tokens = True)\n",
|
1069 |
+
"print(generated_text)"
|
1070 |
+
]
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"cell_type": "code",
|
1074 |
+
"execution_count": 19,
|
1075 |
+
"id": "d9d39064-fe27-40d8-a33a-1193eb145b2a",
|
1076 |
+
"metadata": {
|
1077 |
+
"tags": []
|
1078 |
+
},
|
1079 |
+
"outputs": [
|
1080 |
+
{
|
1081 |
+
"name": "stdout",
|
1082 |
+
"output_type": "stream",
|
1083 |
+
"text": [
|
1084 |
+
"Q: I have an income of about 53255 a year and my monthly expenses include 2208 a month in rent and utilities, a 700 car payment, $300 in food, and about 205 a month in other expenses. Using python, can you create for me a budget spreadsheet and export it to excel?\n",
|
1085 |
+
"\n",
|
1086 |
+
"A: To create a budget spreadsheet and export it to Excel using Python, you can use the `pandas` library to handle the data and `openpyxl` to write the data to an Excel file. Below is a step-by-step guide and the corresponding Python code to achieve this:\n",
|
1087 |
+
"\n",
|
1088 |
+
"1. **Install the necessary libraries**:\n",
|
1089 |
+
" You need to install `pandas` and `openpyxl` if you haven't already. You can install them using pip:\n",
|
1090 |
+
" ```sh\n",
|
1091 |
+
" pip install pandas openpyxl\n",
|
1092 |
+
" ```\n",
|
1093 |
+
"\n",
|
1094 |
+
"2. **Create the budget spreadsheet**:\n",
|
1095 |
+
" Here's a Python script that creates a budget spreadsheet and exports it to an Excel file:\n",
|
1096 |
+
"\n",
|
1097 |
+
" ```python\n",
|
1098 |
+
" import pandas as pd\n",
|
1099 |
+
"\n",
|
1100 |
+
" # Define your income and expenses\n",
|
1101 |
+
" income = 53255\n",
|
1102 |
+
" monthly_expenses = {\n",
|
1103 |
+
" 'Rent and Utilities': 2208,\n",
|
1104 |
+
" 'Car Payment': 700,\n",
|
1105 |
+
" 'Food': 300,\n",
|
1106 |
+
" 'Other Expenses': 205\n",
|
1107 |
+
" }\n",
|
1108 |
+
"\n",
|
1109 |
+
" # Calculate monthly income\n",
|
1110 |
+
" monthly_income = income / 12\n",
|
1111 |
+
"\n",
|
1112 |
+
" # Create a DataFrame for the budget\n",
|
1113 |
+
" budget_df = pd.DataFrame({\n",
|
1114 |
+
" 'Category': ['Income', 'Rent and Utilities', 'Car Payment', 'Food', 'Other Expenses'],\n",
|
1115 |
+
" 'Amount': [monthly_income, monthly_expenses['Rent and Utilities'], monthly_expenses['Car Payment'], monthly_expenses['Food'], monthly_expenses['Other Expenses']]\n",
|
1116 |
+
" })\n",
|
1117 |
+
"\n",
|
1118 |
+
" # Calculate total expenses and remaining income\n",
|
1119 |
+
" total_expenses = budget_df[budget_df['Category'] != 'Income']['Amount'].sum()\n",
|
1120 |
+
" remaining_income = monthly_income - total_expenses\n",
|
1121 |
+
"\n",
|
1122 |
+
" # Add the remaining income to the DataFrame\n",
|
1123 |
+
" budget_df = budget_df.append({'Category': 'Remaining Income', 'Amount': remaining_income}, ignore_index=True)\n",
|
1124 |
+
"\n",
|
1125 |
+
" # Save the DataFrame to an Excel file\n",
|
1126 |
+
" budget_df.to_excel('budget_spreadsheet.xlsx', index=False)\n",
|
1127 |
+
"\n",
|
1128 |
+
" print(\"Budget spreadsheet has been created and saved as 'budget_spreadsheet.xlsx'\")\n",
|
1129 |
+
" ```\n",
|
1130 |
+
"\n",
|
1131 |
+
"3. **Run the script**:\n",
|
1132 |
+
" Save the script to a file, for example, `create_budget.py`, and run it using Python:\n",
|
1133 |
+
" ```sh\n",
|
1134 |
+
" python create_budget.py\n",
|
1135 |
+
" ```\n",
|
1136 |
+
"\n",
|
1137 |
+
"This script will create a budget spreadsheet with your income and expenses, calculate the remaining income, and save it as `budget_spreadsheet.xlsx` in the same directory where you run the script.\n"
|
1138 |
+
]
|
1139 |
+
}
|
1140 |
+
],
|
1141 |
+
"source": [
|
1142 |
+
"formatted_prompt = f\"Q: {val_budget[0]['question']}\\n\\nA: \"\n",
|
1143 |
+
"inputs = tokenizer.encode(formatted_prompt, return_tensors = \"pt\").to(model.device)\n",
|
1144 |
+
"output = model.generate(inputs, max_new_tokens = 800, pad_token_id = tokenizer.pad_token_id, do_sample = False)\n",
|
1145 |
+
"generated_text = tokenizer.decode(output[0], skip_special_tokens = True)\n",
|
1146 |
+
"print(generated_text)"
|
1147 |
+
]
|
1148 |
+
},
|
1149 |
+
{
|
1150 |
+
"cell_type": "markdown",
|
1151 |
+
"id": "90674e69-a32d-4e2c-b97c-fbae5f085c37",
|
1152 |
+
"metadata": {},
|
1153 |
+
"source": [
|
1154 |
+
"## Few Shot Prompting for Goals"
|
1155 |
+
]
|
1156 |
+
},
|
1157 |
+
{
|
1158 |
+
"cell_type": "code",
|
1159 |
+
"execution_count": 24,
|
1160 |
+
"id": "8ab6ea2f-769c-4c65-8c29-4e1c8710090b",
|
1161 |
+
"metadata": {
|
1162 |
+
"tags": []
|
1163 |
+
},
|
1164 |
+
"outputs": [],
|
1165 |
+
"source": [
|
1166 |
+
"del model\n",
|
1167 |
+
"torch.cuda.empty_cache()"
|
1168 |
+
]
|
1169 |
+
},
|
1170 |
+
{
|
1171 |
+
"cell_type": "code",
|
1172 |
+
"execution_count": 25,
|
1173 |
+
"id": "9a95c43c-7f28-4efa-a9a5-bc405659ccbb",
|
1174 |
+
"metadata": {
|
1175 |
+
"tags": []
|
1176 |
+
},
|
1177 |
+
"outputs": [],
|
1178 |
+
"source": [
|
1179 |
+
"os.environ['HF_HOME'] = \"Documents/MSDS/DS5002/trained_lora_model_project/best_model\""
|
1180 |
+
]
|
1181 |
+
},
|
1182 |
+
{
|
1183 |
+
"cell_type": "code",
|
1184 |
+
"execution_count": 26,
|
1185 |
+
"id": "525f072b-05cf-4f2f-8e20-caddc0ee4485",
|
1186 |
+
"metadata": {
|
1187 |
+
"tags": []
|
1188 |
+
},
|
1189 |
+
"outputs": [
|
1190 |
+
{
|
1191 |
+
"data": {
|
1192 |
+
"application/vnd.jupyter.widget-view+json": {
|
1193 |
+
"model_id": "f3e71633bd6e416392e1cedf4df5fed8",
|
1194 |
+
"version_major": 2,
|
1195 |
+
"version_minor": 0
|
1196 |
+
},
|
1197 |
+
"text/plain": [
|
1198 |
+
"Loading checkpoint shards: 0%| | 0/4 [00:00<?, ?it/s]"
|
1199 |
+
]
|
1200 |
+
},
|
1201 |
+
"metadata": {},
|
1202 |
+
"output_type": "display_data"
|
1203 |
+
}
|
1204 |
+
],
|
1205 |
+
"source": [
|
1206 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"TheFinAI/Fino1-8B\")\n",
|
1207 |
+
"model = AutoModelForCausalLM.from_pretrained(\"TheFinAI/Fino1-8B\", device_map = \"auto\", torch_dtype = torch.bfloat16)"
|
1208 |
+
]
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"cell_type": "code",
|
1212 |
+
"execution_count": 27,
|
1213 |
+
"id": "595d19ee-64a4-4cc4-a541-247c3c0d9c98",
|
1214 |
+
"metadata": {
|
1215 |
+
"tags": []
|
1216 |
+
},
|
1217 |
+
"outputs": [],
|
1218 |
+
"source": [
|
1219 |
+
"test_goals = goals[2500:]"
|
1220 |
+
]
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"cell_type": "code",
|
1224 |
+
"execution_count": 28,
|
1225 |
+
"id": "788dc05e-8c80-4a28-a9dc-276a4e2d0f1d",
|
1226 |
+
"metadata": {
|
1227 |
+
"tags": []
|
1228 |
+
},
|
1229 |
+
"outputs": [
|
1230 |
+
{
|
1231 |
+
"name": "stderr",
|
1232 |
+
"output_type": "stream",
|
1233 |
+
"text": [
|
1234 |
+
"Device set to use cuda:0\n"
|
1235 |
+
]
|
1236 |
+
}
|
1237 |
+
],
|
1238 |
+
"source": [
|
1239 |
+
"pipe = pipeline(\n",
|
1240 |
+
" \"text-generation\", \n",
|
1241 |
+
" model=model, \n",
|
1242 |
+
" torch_dtype=torch.bfloat16, \n",
|
1243 |
+
" device_map=\"auto\", \n",
|
1244 |
+
" tokenizer = tokenizer, \n",
|
1245 |
+
" max_new_tokens = 750,\n",
|
1246 |
+
" do_sample = False,\n",
|
1247 |
+
" temperature = 0\n",
|
1248 |
+
")"
|
1249 |
+
]
|
1250 |
+
},
|
1251 |
+
{
|
1252 |
+
"cell_type": "code",
|
1253 |
+
"execution_count": 29,
|
1254 |
+
"id": "d5aaac66-2704-4a5b-9370-96cc7be8b9da",
|
1255 |
+
"metadata": {
|
1256 |
+
"tags": []
|
1257 |
+
},
|
1258 |
+
"outputs": [],
|
1259 |
+
"source": [
|
1260 |
+
"def few_shot_goal(df3,pipe,n = 1,q = 10):\n",
|
1261 |
+
" examples = []\n",
|
1262 |
+
" for i in range(n):\n",
|
1263 |
+
" instruct = df3['instruct'].iloc[i]\n",
|
1264 |
+
" examples.append(instruct)\n",
|
1265 |
+
" examples.append(df3.iloc[q]['question_1'])\n",
|
1266 |
+
" examples = \"\\n\\n\".join(examples)\n",
|
1267 |
+
" text = pipe(examples)\n",
|
1268 |
+
" print(text[0]['generated_text'])"
|
1269 |
+
]
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"cell_type": "code",
|
1273 |
+
"execution_count": 30,
|
1274 |
+
"id": "de1acda8-b16c-4d44-ac92-996a57138282",
|
1275 |
+
"metadata": {
|
1276 |
+
"tags": []
|
1277 |
+
},
|
1278 |
+
"outputs": [
|
1279 |
+
{
|
1280 |
+
"name": "stderr",
|
1281 |
+
"output_type": "stream",
|
1282 |
+
"text": [
|
1283 |
+
"/scratch/tar3kh/llm_course_2/lib/python3.11/site-packages/transformers/generation/configuration_utils.py:636: UserWarning: `do_sample` is set to `False`. However, `top_p` is set to `0.9` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `top_p`.\n",
|
1284 |
+
" warnings.warn(\n"
|
1285 |
+
]
|
1286 |
+
},
|
1287 |
+
{
|
1288 |
+
"name": "stdout",
|
1289 |
+
"output_type": "stream",
|
1290 |
+
"text": [
|
1291 |
+
"Q: My short term goal is to save for a $1774 vacation in the next year, my medium term goal is to save for down payment for a new car, around 5227 in the next 2 or 3 years, and my long term goal is to save for a down payment for a house around 151861 in the next ten years, can you help me integrate these goals into my budget as well as where I should store these savings?\n",
|
1292 |
+
"\n",
|
1293 |
+
"A: Lets think step by step. 1. Short-Term Goal: $1774 Vacation (1 Year)\n",
|
1294 |
+
"Timeline: 12 months\n",
|
1295 |
+
"Monthly Savings Needed: 1774 / 12 = 148.0\n",
|
1296 |
+
"\n",
|
1297 |
+
"Best Storage Option: High-yield savings account (HYSA)\n",
|
1298 |
+
"Easy access\n",
|
1299 |
+
"Earns some interest\n",
|
1300 |
+
"Safe from market fluctuations,\n",
|
1301 |
+
"\n",
|
1302 |
+
"2. Medium-Term Goal: $5227 Car Down Payment (2–3 Years)\n",
|
1303 |
+
"Timeline Options:\n",
|
1304 |
+
"2 years (24 months) → $218.0/month\n",
|
1305 |
+
"3 years (36 months) → $145.0/month\n",
|
1306 |
+
"Best Storage Option: HYSA or conservative investment\n",
|
1307 |
+
"If comfortable with some risk, a mix of HYSA + conservative investments (e.g., CDs, bond ETFs)\n",
|
1308 |
+
"If risk-averse, keep it in an HYSA,\n",
|
1309 |
+
"\n",
|
1310 |
+
"3. Long-Term Goal: $151861 House Down Payment (10 Years)\n",
|
1311 |
+
"Timeline: 120 months\n",
|
1312 |
+
"Monthly Savings Needed: 151861 / 120 = 1266.0 \n",
|
1313 |
+
"\n",
|
1314 |
+
"Best Storage Option: Investment account\n",
|
1315 |
+
"Given the long time horizon, investing in a mix of index funds (S&P 500, total stock market) + bonds could provide higher returns.\n",
|
1316 |
+
"Consider Roth IRA (if eligible) or brokerage account to allow tax-efficient growth.\n",
|
1317 |
+
"\n",
|
1318 |
+
"Summary of Total Savings Targets:\n",
|
1319 |
+
"Total Monthly Savings goal = $1559.0 - $1631.0/month\n",
|
1320 |
+
"\n",
|
1321 |
+
"Q: My short term goal is to save for a $2474 vacation in the next year, my medium term goal is to save for down payment for a new car, around 6601 in the next 2 or 3 years, and my long term goal is to save for a down payment for a house around 164733 in the next ten years, can you help me integrate these goals into my budget as well as where I should store these savings?\n",
|
1322 |
+
"\n",
|
1323 |
+
"A: Lets think step by step. 1. Short-Term Goal: $2474 Vacation (1 Year)\n",
|
1324 |
+
"Timeline: 12 months\n",
|
1325 |
+
"Monthly Savings Needed: 2474 / 12 = 206.0\n",
|
1326 |
+
"\n",
|
1327 |
+
"Best Storage Option: High-yield savings account (HYSA)\n",
|
1328 |
+
"Easy access\n",
|
1329 |
+
"Earns some interest\n",
|
1330 |
+
"Safe from market fluctuations,\n",
|
1331 |
+
"\n",
|
1332 |
+
"2. Medium-Term Goal: $6601 Car Down Payment (2–3 Years)\n",
|
1333 |
+
"Timeline Options:\n",
|
1334 |
+
"2 years (24 months) → $275.0/month\n",
|
1335 |
+
"3 years (36 months) → $183.0/month\n",
|
1336 |
+
"Best Storage Option: HYSA or conservative investment\n",
|
1337 |
+
"If comfortable with some risk, a mix of HYSA + conservative investments (e.g., CDs, bond ETFs)\n",
|
1338 |
+
"If risk-averse, keep it in an HYSA,\n",
|
1339 |
+
"\n",
|
1340 |
+
"3. Long-Term Goal: $164733 House Down Payment (10 Years)\n",
|
1341 |
+
"Timeline: 120 months\n",
|
1342 |
+
"Monthly Savings Needed: 164733 / 120 = 1373.0 \n",
|
1343 |
+
"\n",
|
1344 |
+
"Best Storage Option: Investment account\n",
|
1345 |
+
"Given the long time horizon, investing in a mix of index funds (S&P 500, total stock market) + bonds could provide higher returns.\n",
|
1346 |
+
"Consider Roth IRA (if eligible) or brokerage account to allow tax-efficient growth.\n",
|
1347 |
+
"\n",
|
1348 |
+
"Summary of Total Savings Targets:\n",
|
1349 |
+
"Total Monthly Savings goal = $1762.0 - $1854.0/month\n",
|
1350 |
+
"\n",
|
1351 |
+
"Q: My short term goal is to save for a $3357 vacation in the next year, my medium term goal is to save for down payment for a new car, around 6867 in the next 2 or 3 years, and my long term goal is to save for a down payment for a house around 115061 in the next ten years, can you help me integrate these goals into my budget as well as where I should store these savings?\n",
|
1352 |
+
"\n",
|
1353 |
+
"A: Lets think step by step. 1. Short-Term Goal: $3357 Vacation (1 Year)\n",
|
1354 |
+
"Timeline: 12 months\n",
|
1355 |
+
"Monthly Savings Needed: 3357 / 12 = 280.0\n",
|
1356 |
+
"\n",
|
1357 |
+
"Best Storage Option: High-yield savings account (HYSA)\n",
|
1358 |
+
"Easy access\n",
|
1359 |
+
"Earns some interest\n",
|
1360 |
+
"Safe from market fluctuations,\n",
|
1361 |
+
"\n",
|
1362 |
+
"2. Medium-Term Goal: $6867 Car Down Payment (2–3 Years)\n",
|
1363 |
+
"Timeline Options:\n",
|
1364 |
+
"2 years (24 months) → $286.0/month\n",
|
1365 |
+
"3 years (36 months) → $191.0/month\n",
|
1366 |
+
"Best Storage Option: HYSA or conservative investment\n",
|
1367 |
+
"If comfortable with some risk, a mix of HYSA + conservative investments (e.g., CDs, bond ETFs)\n",
|
1368 |
+
"If risk-averse, keep it in an HYSA,\n",
|
1369 |
+
"\n",
|
1370 |
+
"3. Long-Term Goal: $115061 House Down Payment (10 Years)\n",
|
1371 |
+
"Timeline: 120 months\n",
|
1372 |
+
"Monthly Savings Needed: 115061 / 120 = 959.0 \n",
|
1373 |
+
"\n",
|
1374 |
+
"Best Storage Option: Investment account\n",
|
1375 |
+
"Given the long time horizon, investing in a mix of index funds (S&P 500, total stock market) + bonds could provide higher returns.\n",
|
1376 |
+
"Consider Roth IRA (if eligible) or brokerage account to allow tax-efficient growth.\n",
|
1377 |
+
"\n",
|
1378 |
+
"Summary of Total Savings Targets:\n",
|
1379 |
+
"Total Monthly Savings goal = $1429.0 - $1525.0/month\n",
|
1380 |
+
"\n",
|
1381 |
+
"Q: My short term goal is to save for a $1843 vacation in the next year, my medium term goal is to save for down payment for a new car, around 7441 in the next 2 or 3 years, and my long term goal is to save for a down payment for a house around 187903 in the next ten years, can you help me integrate these goals into my budget as well as where I should store these savings?\n",
|
1382 |
+
"\n",
|
1383 |
+
"A: Lets think step by step. 1. Short-Term Goal: $1843 Vacation (1 Year)\n",
|
1384 |
+
"Timeline: 12 months\n",
|
1385 |
+
"Monthly Savings Needed: 1843 / 12 = 153.0\n",
|
1386 |
+
"\n",
|
1387 |
+
"Best Storage Option: High-yield savings account (HYSA)\n",
|
1388 |
+
"Easy access\n",
|
1389 |
+
"Earns some interest\n",
|
1390 |
+
"Safe from market fluctuations,\n",
|
1391 |
+
"\n",
|
1392 |
+
"2. Medium-Term Goal: $7441 Car Down Payment (2–3 Years)\n",
|
1393 |
+
"Timeline Options:\n",
|
1394 |
+
"2 years (24 months) → $310.0/month\n",
|
1395 |
+
"3 years (36 months) → $206.0/month\n",
|
1396 |
+
"Best Storage Option: HYSA or conservative investment\n",
|
1397 |
+
"If comfortable with some risk, a mix of HYSA + conservative investments (e.g., CDs, bond ETFs)\n",
|
1398 |
+
"If risk-averse, keep it in an HYSA,\n",
|
1399 |
+
"\n",
|
1400 |
+
"3. Long-Term Goal: $187903 House Down Payment (10 Years)\n",
|
1401 |
+
"Timeline: 120 months\n",
|
1402 |
+
"Monthly Savings Needed: 187903 / 120 = 1567.0 \n",
|
1403 |
+
"\n",
|
1404 |
+
"Best Storage Option: Investment account\n",
|
1405 |
+
"Given the long time horizon, investing in a mix of index funds (S&P 500, total stock market) + bonds could provide higher returns.\n",
|
1406 |
+
"Consider Roth IRA (if eligible) or brokerage account to allow tax-efficient growth.\n",
|
1407 |
+
"\n",
|
1408 |
+
"Summary of Total Savings Targets:\n",
|
1409 |
+
"Total Monthly Savings goal = $2030.0 - $2120.0/month\n",
|
1410 |
+
"\n",
|
1411 |
+
"## Thinking\n",
|
1412 |
+
"\n",
|
1413 |
+
"Alright, let's figure out how to save for these goals. First, I need to break down each goal into smaller, manageable chunks. For the vacation, I want to save $1843 in a year. So, I'll divide that by 12 months, which gives me $153.0 per month. Easy enough.\n",
|
1414 |
+
"\n",
|
1415 |
+
"Next up is the car down payment. I'm aiming for $7441 over 2 to 3 years. If I go with the 2-year timeline, that's $310.0 per month. If I stretch it to 3 years, it's $206.0 per month. I'll stick with the 2-year plan for now.\n",
|
1416 |
+
"\n",
|
1417 |
+
"Now, onto the big one: saving for a house down payment. I need $187903 in 10 years. Let me do the math: $187903 divided by 120 months equals $1567.0 per month. That's a bit more substantial, but doable.\n",
|
1418 |
+
"\n",
|
1419 |
+
"So, what's the total monthly savings I need to aim for? Let's add them up: $153.0 for the vacation, $310.0 for the car, and $1567.0 for the house. That gives me a total of $2030.0 per month. \n",
|
1420 |
+
"\n",
|
1421 |
+
"I should probably double-check that I've got everything right. The vacation savings are $153.0, car is $310.0, and house is $1567.0. Yep, adding those up confirms the total is $2030.0 per month.\n",
|
1422 |
+
"\n",
|
1423 |
+
"Now, where should I store these savings? For the short-term goal, like the vacation, a high-yield savings account (HYSA) is perfect. It's easily accessible, earns some interest, and keeps my money safe from market fluctuations.\n",
|
1424 |
+
"\n",
|
1425 |
+
"For the medium-term goal, the car down payment, I can also use a HYSA or consider a mix of HYSA and conservative investments if I'm comfortable with a bit of risk. This will help grow my savings over the 2-year period.\n",
|
1426 |
+
"\n",
|
1427 |
+
"For the long-term goal, the house down payment, I'll need to invest in a mix of index funds and bonds. This will allow me to grow my savings over the 10-year period, given the long time horizon.\n",
|
1428 |
+
"\n",
|
1429 |
+
"In conclusion, I've got a clear plan: save\n"
|
1430 |
+
]
|
1431 |
+
}
|
1432 |
+
],
|
1433 |
+
"source": [
|
1434 |
+
"few_shot_goal(test_goals,pipe,n = 3,q=10)"
|
1435 |
+
]
|
1436 |
+
},
|
1437 |
+
{
|
1438 |
+
"cell_type": "code",
|
1439 |
+
"execution_count": 31,
|
1440 |
+
"id": "7687bd76-8ec6-4069-bf14-233be6efff27",
|
1441 |
+
"metadata": {
|
1442 |
+
"tags": []
|
1443 |
+
},
|
1444 |
+
"outputs": [
|
1445 |
+
{
|
1446 |
+
"name": "stderr",
|
1447 |
+
"output_type": "stream",
|
1448 |
+
"text": [
|
1449 |
+
"`pretrained` model kwarg is not of type `str`. Many other model arguments may be ignored. Please do not launch via accelerate or use `parallelize=True` if passing an existing model this way.\n",
|
1450 |
+
"Passed an already-initialized model through `pretrained`, assuming single-process call to evaluate() or custom distributed integration\n",
|
1451 |
+
"100%|██████████| 30/30 [00:00<00:00, 622.54it/s]\n",
|
1452 |
+
"100%|██████████| 30/30 [00:00<00:00, 620.90it/s]\n",
|
1453 |
+
"100%|██████████| 30/30 [00:00<00:00, 624.98it/s]\n",
|
1454 |
+
"100%|██████████| 30/30 [00:00<00:00, 636.38it/s]\n",
|
1455 |
+
"100%|██████████| 30/30 [00:00<00:00, 636.78it/s]\n",
|
1456 |
+
"100%|██████████| 30/30 [00:00<00:00, 620.74it/s]\n",
|
1457 |
+
"100%|██████████| 30/30 [00:00<00:00, 639.07it/s]\n",
|
1458 |
+
"100%|██████████| 30/30 [00:00<00:00, 630.23it/s]\n",
|
1459 |
+
"100%|██████████| 30/30 [00:00<00:00, 407.78it/s]\n",
|
1460 |
+
"100%|██████████| 30/30 [00:00<00:00, 624.93it/s]\n",
|
1461 |
+
"100%|██████████| 30/30 [00:00<00:00, 641.87it/s]\n",
|
1462 |
+
"100%|██████████| 30/30 [00:00<00:00, 630.35it/s]\n",
|
1463 |
+
"100%|██████████| 30/30 [00:00<00:00, 620.48it/s]\n",
|
1464 |
+
"100%|██████████| 30/30 [00:00<00:00, 636.17it/s]\n",
|
1465 |
+
"100%|██████████| 30/30 [00:00<00:00, 633.90it/s]\n",
|
1466 |
+
"100%|██████████| 30/30 [00:00<00:00, 639.94it/s]\n",
|
1467 |
+
"100%|██████████| 30/30 [00:00<00:00, 458.23it/s]\n",
|
1468 |
+
"100%|██████████| 30/30 [00:00<00:00, 617.72it/s]\n",
|
1469 |
+
"100%|██████████| 30/30 [00:00<00:00, 640.94it/s]\n",
|
1470 |
+
"100%|██████████| 30/30 [00:00<00:00, 628.91it/s]\n",
|
1471 |
+
"100%|██████████| 30/30 [00:00<00:00, 636.75it/s]\n",
|
1472 |
+
"100%|██████████| 30/30 [00:00<00:00, 634.69it/s]\n",
|
1473 |
+
"100%|██████████| 30/30 [00:00<00:00, 643.04it/s]\n",
|
1474 |
+
"100%|██████████| 30/30 [00:00<00:00, 637.35it/s]\n",
|
1475 |
+
"100%|██████████| 30/30 [00:00<00:00, 641.38it/s]\n",
|
1476 |
+
"100%|██████████| 30/30 [00:00<00:00, 631.82it/s]\n",
|
1477 |
+
"100%|██████████| 30/30 [00:00<00:00, 645.73it/s]\n",
|
1478 |
+
"100%|██████████| 30/30 [00:00<00:00, 636.58it/s]\n",
|
1479 |
+
"100%|██████████| 30/30 [00:00<00:00, 638.31it/s]\n",
|
1480 |
+
"100%|██████████| 30/30 [00:00<00:00, 638.65it/s]\n",
|
1481 |
+
"100%|██████████| 30/30 [00:00<00:00, 639.82it/s]\n",
|
1482 |
+
"100%|██████████| 30/30 [00:00<00:00, 644.89it/s]\n",
|
1483 |
+
"100%|██████████| 30/30 [00:00<00:00, 629.31it/s]\n",
|
1484 |
+
"100%|██████████| 30/30 [00:00<00:00, 639.52it/s]\n",
|
1485 |
+
"100%|██████████| 30/30 [00:00<00:00, 450.13it/s]\n",
|
1486 |
+
"100%|██████████| 30/30 [00:00<00:00, 634.88it/s]\n",
|
1487 |
+
"100%|██████████| 30/30 [00:00<00:00, 636.95it/s]\n",
|
1488 |
+
"100%|██████████| 30/30 [00:00<00:00, 633.42it/s]\n",
|
1489 |
+
"100%|██████████| 30/30 [00:00<00:00, 642.98it/s]\n",
|
1490 |
+
"100%|██████████| 30/30 [00:00<00:00, 644.13it/s]\n",
|
1491 |
+
"100%|██████████| 30/30 [00:00<00:00, 646.38it/s]\n",
|
1492 |
+
"100%|██████████| 30/30 [00:00<00:00, 643.25it/s]\n",
|
1493 |
+
"100%|██████████| 30/30 [00:00<00:00, 644.68it/s]\n",
|
1494 |
+
"100%|██████████| 30/30 [00:00<00:00, 642.12it/s]\n",
|
1495 |
+
"100%|██████████| 30/30 [00:00<00:00, 650.10it/s]\n",
|
1496 |
+
"100%|██████████| 30/30 [00:00<00:00, 641.65it/s]\n",
|
1497 |
+
"100%|██████████| 30/30 [00:00<00:00, 644.04it/s]\n",
|
1498 |
+
"100%|██████████| 30/30 [00:00<00:00, 620.65it/s]\n",
|
1499 |
+
"100%|██████████| 30/30 [00:00<00:00, 633.96it/s]\n",
|
1500 |
+
"100%|██████████| 30/30 [00:00<00:00, 630.25it/s]\n",
|
1501 |
+
"100%|██████████| 30/30 [00:00<00:00, 626.48it/s]\n",
|
1502 |
+
"100%|██████████| 30/30 [00:00<00:00, 635.92it/s]\n",
|
1503 |
+
"100%|██████████| 30/30 [00:00<00:00, 580.31it/s]\n",
|
1504 |
+
"100%|██████████| 30/30 [00:00<00:00, 614.04it/s]\n",
|
1505 |
+
"100%|██████████| 30/30 [00:00<00:00, 614.74it/s]\n",
|
1506 |
+
"100%|██████████| 30/30 [00:00<00:00, 615.03it/s]\n",
|
1507 |
+
"100%|██████████| 30/30 [00:00<00:00, 468.15it/s]\n",
|
1508 |
+
"100%|██████████| 30/30 [00:00<00:00, 56.67it/s]\n",
|
1509 |
+
"Running loglikelihood requests: 100%|██████████| 6840/6840 [01:21<00:00, 83.78it/s]\n",
|
1510 |
+
"Running generate_until requests: 0%| | 0/30 [00:00<?, ?it/s]/scratch/tar3kh/llm_course_2/lib/python3.11/site-packages/transformers/generation/configuration_utils.py:631: UserWarning: `do_sample` is set to `False`. However, `temperature` is set to `0.6` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `temperature`.\n",
|
1511 |
+
" warnings.warn(\n",
|
1512 |
+
"Running generate_until requests: 100%|██████████| 30/30 [03:09<00:00, 6.32s/it]\n",
|
1513 |
+
"fatal: not a git repository (or any parent up to mount point /sfs/gpfs)\n",
|
1514 |
+
"Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set).\n"
|
1515 |
+
]
|
1516 |
+
}
|
1517 |
+
],
|
1518 |
+
"source": [
|
1519 |
+
"results3 = lm_eval.simple_evaluate(\n",
|
1520 |
+
" model = 'hf',\n",
|
1521 |
+
" model_args = {\"pretrained\": model, \"dtype\": \"bfloat16\", \"toeknzier\": tokenizer},\n",
|
1522 |
+
" tasks = ['gsm8k_cot', 'mmlu'],\n",
|
1523 |
+
" task_manager = task_manager,\n",
|
1524 |
+
" log_samples = True, \n",
|
1525 |
+
" batch_size = \"1\", \n",
|
1526 |
+
" limit = 30, \n",
|
1527 |
+
" random_seed = 42)"
|
1528 |
+
]
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"cell_type": "code",
|
1532 |
+
"execution_count": 32,
|
1533 |
+
"id": "e5fa13b0-e3b5-4ef2-8e8f-6e68d9121116",
|
1534 |
+
"metadata": {
|
1535 |
+
"tags": []
|
1536 |
+
},
|
1537 |
+
"outputs": [
|
1538 |
+
{
|
1539 |
+
"data": {
|
1540 |
+
"text/plain": [
|
1541 |
+
"{'gsm8k_cot': {'alias': 'gsm8k_cot',\n",
|
1542 |
+
" 'exact_match,strict-match': np.float64(0.6333333333333333),\n",
|
1543 |
+
" 'exact_match_stderr,strict-match': 0.0894855453983996,\n",
|
1544 |
+
" 'exact_match,flexible-extract': np.float64(0.6333333333333333),\n",
|
1545 |
+
" 'exact_match_stderr,flexible-extract': 0.0894855453983996},\n",
|
1546 |
+
" 'mmlu': {'acc,none': 0.6684210526315789,\n",
|
1547 |
+
" 'acc_stderr,none': np.float64(0.010724424663842536),\n",
|
1548 |
+
" 'alias': 'mmlu'},\n",
|
1549 |
+
" 'mmlu_humanities': {'acc,none': 0.7076923076923077,\n",
|
1550 |
+
" 'acc_stderr,none': np.float64(0.02268555050327971),\n",
|
1551 |
+
" 'alias': ' - humanities'},\n",
|
1552 |
+
" 'mmlu_formal_logic': {'alias': ' - formal_logic',\n",
|
1553 |
+
" 'acc,none': 0.5333333333333333,\n",
|
1554 |
+
" 'acc_stderr,none': 0.09264111117062017},\n",
|
1555 |
+
" 'mmlu_high_school_european_history': {'alias': ' - high_school_european_history',\n",
|
1556 |
+
" 'acc,none': 0.6333333333333333,\n",
|
1557 |
+
" 'acc_stderr,none': 0.08948554539839962},\n",
|
1558 |
+
" 'mmlu_high_school_us_history': {'alias': ' - high_school_us_history',\n",
|
1559 |
+
" 'acc,none': 0.7333333333333333,\n",
|
1560 |
+
" 'acc_stderr,none': 0.08211756827352532},\n",
|
1561 |
+
" 'mmlu_high_school_world_history': {'alias': ' - high_school_world_history',\n",
|
1562 |
+
" 'acc,none': 0.8,\n",
|
1563 |
+
" 'acc_stderr,none': 0.07427813527082075},\n",
|
1564 |
+
" 'mmlu_international_law': {'alias': ' - international_law',\n",
|
1565 |
+
" 'acc,none': 0.9,\n",
|
1566 |
+
" 'acc_stderr,none': 0.055708601453115555},\n",
|
1567 |
+
" 'mmlu_jurisprudence': {'alias': ' - jurisprudence',\n",
|
1568 |
+
" 'acc,none': 0.7333333333333333,\n",
|
1569 |
+
" 'acc_stderr,none': 0.08211756827352532},\n",
|
1570 |
+
" 'mmlu_logical_fallacies': {'alias': ' - logical_fallacies',\n",
|
1571 |
+
" 'acc,none': 0.8333333333333334,\n",
|
1572 |
+
" 'acc_stderr,none': 0.06920456654478331},\n",
|
1573 |
+
" 'mmlu_moral_disputes': {'alias': ' - moral_disputes',\n",
|
1574 |
+
" 'acc,none': 0.6333333333333333,\n",
|
1575 |
+
" 'acc_stderr,none': 0.0894855453983996},\n",
|
1576 |
+
" 'mmlu_moral_scenarios': {'alias': ' - moral_scenarios',\n",
|
1577 |
+
" 'acc,none': 0.5,\n",
|
1578 |
+
" 'acc_stderr,none': 0.09284766908852593},\n",
|
1579 |
+
" 'mmlu_philosophy': {'alias': ' - philosophy',\n",
|
1580 |
+
" 'acc,none': 0.6666666666666666,\n",
|
1581 |
+
" 'acc_stderr,none': 0.0875376219064817},\n",
|
1582 |
+
" 'mmlu_prehistory': {'alias': ' - prehistory',\n",
|
1583 |
+
" 'acc,none': 0.7333333333333333,\n",
|
1584 |
+
" 'acc_stderr,none': 0.0821175682735253},\n",
|
1585 |
+
" 'mmlu_professional_law': {'alias': ' - professional_law',\n",
|
1586 |
+
" 'acc,none': 0.6666666666666666,\n",
|
1587 |
+
" 'acc_stderr,none': 0.08753762190648169},\n",
|
1588 |
+
" 'mmlu_world_religions': {'alias': ' - world_religions',\n",
|
1589 |
+
" 'acc,none': 0.8333333333333334,\n",
|
1590 |
+
" 'acc_stderr,none': 0.06920456654478328},\n",
|
1591 |
+
" 'mmlu_other': {'acc,none': 0.7128205128205128,\n",
|
1592 |
+
" 'acc_stderr,none': np.float64(0.021964544728876025),\n",
|
1593 |
+
" 'alias': ' - other'},\n",
|
1594 |
+
" 'mmlu_business_ethics': {'alias': ' - business_ethics',\n",
|
1595 |
+
" 'acc,none': 0.8,\n",
|
1596 |
+
" 'acc_stderr,none': 0.07427813527082075},\n",
|
1597 |
+
" 'mmlu_clinical_knowledge': {'alias': ' - clinical_knowledge',\n",
|
1598 |
+
" 'acc,none': 0.7333333333333333,\n",
|
1599 |
+
" 'acc_stderr,none': 0.08211756827352529},\n",
|
1600 |
+
" 'mmlu_college_medicine': {'alias': ' - college_medicine',\n",
|
1601 |
+
" 'acc,none': 0.7333333333333333,\n",
|
1602 |
+
" 'acc_stderr,none': 0.08211756827352529},\n",
|
1603 |
+
" 'mmlu_global_facts': {'alias': ' - global_facts',\n",
|
1604 |
+
" 'acc,none': 0.4,\n",
|
1605 |
+
" 'acc_stderr,none': 0.09097176522946843},\n",
|
1606 |
+
" 'mmlu_human_aging': {'alias': ' - human_aging',\n",
|
1607 |
+
" 'acc,none': 0.5333333333333333,\n",
|
1608 |
+
" 'acc_stderr,none': 0.09264111117062017},\n",
|
1609 |
+
" 'mmlu_management': {'alias': ' - management',\n",
|
1610 |
+
" 'acc,none': 0.8666666666666667,\n",
|
1611 |
+
" 'acc_stderr,none': 0.06312427686319994},\n",
|
1612 |
+
" 'mmlu_marketing': {'alias': ' - marketing',\n",
|
1613 |
+
" 'acc,none': 0.8666666666666667,\n",
|
1614 |
+
" 'acc_stderr,none': 0.06312427686319991},\n",
|
1615 |
+
" 'mmlu_medical_genetics': {'alias': ' - medical_genetics',\n",
|
1616 |
+
" 'acc,none': 0.7666666666666667,\n",
|
1617 |
+
" 'acc_stderr,none': 0.0785403232453173},\n",
|
1618 |
+
" 'mmlu_miscellaneous': {'alias': ' - miscellaneous',\n",
|
1619 |
+
" 'acc,none': 0.8666666666666667,\n",
|
1620 |
+
" 'acc_stderr,none': 0.06312427686319994},\n",
|
1621 |
+
" 'mmlu_nutrition': {'alias': ' - nutrition',\n",
|
1622 |
+
" 'acc,none': 0.7666666666666667,\n",
|
1623 |
+
" 'acc_stderr,none': 0.07854032324531726},\n",
|
1624 |
+
" 'mmlu_professional_accounting': {'alias': ' - professional_accounting',\n",
|
1625 |
+
" 'acc,none': 0.4666666666666667,\n",
|
1626 |
+
" 'acc_stderr,none': 0.09264111117062017},\n",
|
1627 |
+
" 'mmlu_professional_medicine': {'alias': ' - professional_medicine',\n",
|
1628 |
+
" 'acc,none': 0.8333333333333334,\n",
|
1629 |
+
" 'acc_stderr,none': 0.06920456654478331},\n",
|
1630 |
+
" 'mmlu_virology': {'alias': ' - virology',\n",
|
1631 |
+
" 'acc,none': 0.6333333333333333,\n",
|
1632 |
+
" 'acc_stderr,none': 0.0894855453983996},\n",
|
1633 |
+
" 'mmlu_social_sciences': {'acc,none': 0.7583333333333333,\n",
|
1634 |
+
" 'acc_stderr,none': np.float64(0.021975401318080102),\n",
|
1635 |
+
" 'alias': ' - social sciences'},\n",
|
1636 |
+
" 'mmlu_econometrics': {'alias': ' - econometrics',\n",
|
1637 |
+
" 'acc,none': 0.4666666666666667,\n",
|
1638 |
+
" 'acc_stderr,none': 0.09264111117062017},\n",
|
1639 |
+
" 'mmlu_high_school_geography': {'alias': ' - high_school_geography',\n",
|
1640 |
+
" 'acc,none': 0.8666666666666667,\n",
|
1641 |
+
" 'acc_stderr,none': 0.06312427686319994},\n",
|
1642 |
+
" 'mmlu_high_school_government_and_politics': {'alias': ' - high_school_government_and_politics',\n",
|
1643 |
+
" 'acc,none': 0.9,\n",
|
1644 |
+
" 'acc_stderr,none': 0.05570860145311553},\n",
|
1645 |
+
" 'mmlu_high_school_macroeconomics': {'alias': ' - high_school_macroeconomics',\n",
|
1646 |
+
" 'acc,none': 0.6333333333333333,\n",
|
1647 |
+
" 'acc_stderr,none': 0.0894855453983996},\n",
|
1648 |
+
" 'mmlu_high_school_microeconomics': {'alias': ' - high_school_microeconomics',\n",
|
1649 |
+
" 'acc,none': 0.7,\n",
|
1650 |
+
" 'acc_stderr,none': 0.0850962943396763},\n",
|
1651 |
+
" 'mmlu_high_school_psychology': {'alias': ' - high_school_psychology',\n",
|
1652 |
+
" 'acc,none': 0.8333333333333334,\n",
|
1653 |
+
" 'acc_stderr,none': 0.06920456654478331},\n",
|
1654 |
+
" 'mmlu_human_sexuality': {'alias': ' - human_sexuality',\n",
|
1655 |
+
" 'acc,none': 0.8,\n",
|
1656 |
+
" 'acc_stderr,none': 0.07427813527082075},\n",
|
1657 |
+
" 'mmlu_professional_psychology': {'alias': ' - professional_psychology',\n",
|
1658 |
+
" 'acc,none': 0.7666666666666667,\n",
|
1659 |
+
" 'acc_stderr,none': 0.07854032324531729},\n",
|
1660 |
+
" 'mmlu_public_relations': {'alias': ' - public_relations',\n",
|
1661 |
+
" 'acc,none': 0.6333333333333333,\n",
|
1662 |
+
" 'acc_stderr,none': 0.0894855453983996},\n",
|
1663 |
+
" 'mmlu_security_studies': {'alias': ' - security_studies',\n",
|
1664 |
+
" 'acc,none': 0.8,\n",
|
1665 |
+
" 'acc_stderr,none': 0.07427813527082075},\n",
|
1666 |
+
" 'mmlu_sociology': {'alias': ' - sociology',\n",
|
1667 |
+
" 'acc,none': 0.8,\n",
|
1668 |
+
" 'acc_stderr,none': 0.07427813527082075},\n",
|
1669 |
+
" 'mmlu_us_foreign_policy': {'alias': ' - us_foreign_policy',\n",
|
1670 |
+
" 'acc,none': 0.9,\n",
|
1671 |
+
" 'acc_stderr,none': 0.055708601453115555},\n",
|
1672 |
+
" 'mmlu_stem': {'acc,none': 0.5543859649122806,\n",
|
1673 |
+
" 'acc_stderr,none': np.float64(0.01938330262875528),\n",
|
1674 |
+
" 'alias': ' - stem'},\n",
|
1675 |
+
" 'mmlu_abstract_algebra': {'alias': ' - abstract_algebra',\n",
|
1676 |
+
" 'acc,none': 0.4,\n",
|
1677 |
+
" 'acc_stderr,none': 0.09097176522946843},\n",
|
1678 |
+
" 'mmlu_anatomy': {'alias': ' - anatomy',\n",
|
1679 |
+
" 'acc,none': 0.6666666666666666,\n",
|
1680 |
+
" 'acc_stderr,none': 0.0875376219064817},\n",
|
1681 |
+
" 'mmlu_astronomy': {'alias': ' - astronomy',\n",
|
1682 |
+
" 'acc,none': 0.7666666666666667,\n",
|
1683 |
+
" 'acc_stderr,none': 0.0785403232453173},\n",
|
1684 |
+
" 'mmlu_college_biology': {'alias': ' - college_biology',\n",
|
1685 |
+
" 'acc,none': 0.8666666666666667,\n",
|
1686 |
+
" 'acc_stderr,none': 0.06312427686319992},\n",
|
1687 |
+
" 'mmlu_college_chemistry': {'alias': ' - college_chemistry',\n",
|
1688 |
+
" 'acc,none': 0.4666666666666667,\n",
|
1689 |
+
" 'acc_stderr,none': 0.09264111117062017},\n",
|
1690 |
+
" 'mmlu_college_computer_science': {'alias': ' - college_computer_science',\n",
|
1691 |
+
" 'acc,none': 0.5333333333333333,\n",
|
1692 |
+
" 'acc_stderr,none': 0.09264111117062017},\n",
|
1693 |
+
" 'mmlu_college_mathematics': {'alias': ' - college_mathematics',\n",
|
1694 |
+
" 'acc,none': 0.2,\n",
|
1695 |
+
" 'acc_stderr,none': 0.07427813527082075},\n",
|
1696 |
+
" 'mmlu_college_physics': {'alias': ' - college_physics',\n",
|
1697 |
+
" 'acc,none': 0.43333333333333335,\n",
|
1698 |
+
" 'acc_stderr,none': 0.0920186554465537},\n",
|
1699 |
+
" 'mmlu_computer_security': {'alias': ' - computer_security',\n",
|
1700 |
+
" 'acc,none': 0.8,\n",
|
1701 |
+
" 'acc_stderr,none': 0.07427813527082075},\n",
|
1702 |
+
" 'mmlu_conceptual_physics': {'alias': ' - conceptual_physics',\n",
|
1703 |
+
" 'acc,none': 0.6333333333333333,\n",
|
1704 |
+
" 'acc_stderr,none': 0.08948554539839962},\n",
|
1705 |
+
" 'mmlu_electrical_engineering': {'alias': ' - electrical_engineering',\n",
|
1706 |
+
" 'acc,none': 0.5,\n",
|
1707 |
+
" 'acc_stderr,none': 0.09284766908852593},\n",
|
1708 |
+
" 'mmlu_elementary_mathematics': {'alias': ' - elementary_mathematics',\n",
|
1709 |
+
" 'acc,none': 0.36666666666666664,\n",
|
1710 |
+
" 'acc_stderr,none': 0.08948554539839962},\n",
|
1711 |
+
" 'mmlu_high_school_biology': {'alias': ' - high_school_biology',\n",
|
1712 |
+
" 'acc,none': 0.8666666666666667,\n",
|
1713 |
+
" 'acc_stderr,none': 0.06312427686319992},\n",
|
1714 |
+
" 'mmlu_high_school_chemistry': {'alias': ' - high_school_chemistry',\n",
|
1715 |
+
" 'acc,none': 0.6666666666666666,\n",
|
1716 |
+
" 'acc_stderr,none': 0.08753762190648169},\n",
|
1717 |
+
" 'mmlu_high_school_computer_science': {'alias': ' - high_school_computer_science',\n",
|
1718 |
+
" 'acc,none': 0.8333333333333334,\n",
|
1719 |
+
" 'acc_stderr,none': 0.06920456654478331},\n",
|
1720 |
+
" 'mmlu_high_school_mathematics': {'alias': ' - high_school_mathematics',\n",
|
1721 |
+
" 'acc,none': 0.26666666666666666,\n",
|
1722 |
+
" 'acc_stderr,none': 0.08211756827352527},\n",
|
1723 |
+
" 'mmlu_high_school_physics': {'alias': ' - high_school_physics',\n",
|
1724 |
+
" 'acc,none': 0.36666666666666664,\n",
|
1725 |
+
" 'acc_stderr,none': 0.0894855453983996},\n",
|
1726 |
+
" 'mmlu_high_school_statistics': {'alias': ' - high_school_statistics',\n",
|
1727 |
+
" 'acc,none': 0.43333333333333335,\n",
|
1728 |
+
" 'acc_stderr,none': 0.0920186554465537},\n",
|
1729 |
+
" 'mmlu_machine_learning': {'alias': ' - machine_learning',\n",
|
1730 |
+
" 'acc,none': 0.4666666666666667,\n",
|
1731 |
+
" 'acc_stderr,none': 0.09264111117062017}}"
|
1732 |
+
]
|
1733 |
+
},
|
1734 |
+
"execution_count": 32,
|
1735 |
+
"metadata": {},
|
1736 |
+
"output_type": "execute_result"
|
1737 |
+
}
|
1738 |
+
],
|
1739 |
+
"source": [
|
1740 |
+
"results3['results']"
|
1741 |
+
]
|
1742 |
+
},
|
1743 |
+
{
|
1744 |
+
"cell_type": "code",
|
1745 |
+
"execution_count": null,
|
1746 |
+
"id": "1345da8f-a8a6-493b-b28b-7021edb6b16b",
|
1747 |
+
"metadata": {},
|
1748 |
+
"outputs": [],
|
1749 |
+
"source": []
|
1750 |
+
}
|
1751 |
+
],
|
1752 |
+
"metadata": {
|
1753 |
+
"kernelspec": {
|
1754 |
+
"display_name": "llm_course_2",
|
1755 |
+
"language": "python",
|
1756 |
+
"name": "llm_course_2"
|
1757 |
+
},
|
1758 |
+
"language_info": {
|
1759 |
+
"codemirror_mode": {
|
1760 |
+
"name": "ipython",
|
1761 |
+
"version": 3
|
1762 |
+
},
|
1763 |
+
"file_extension": ".py",
|
1764 |
+
"mimetype": "text/x-python",
|
1765 |
+
"name": "python",
|
1766 |
+
"nbconvert_exporter": "python",
|
1767 |
+
"pygments_lexer": "ipython3",
|
1768 |
+
"version": "3.11.11"
|
1769 |
+
}
|
1770 |
+
},
|
1771 |
+
"nbformat": 4,
|
1772 |
+
"nbformat_minor": 5
|
1773 |
+
}
|
budget_dataset.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
goals_dataset.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|