File size: 14,841 Bytes
174101d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"id": "849d6959-9a62-48a8-99ef-546326471ded",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import os\n",
"os.environ['HF_HOME'] = \"/scratch/tar3kh/models/cache\"\n",
"import torch \n",
"from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline\n",
"from datasets import load_dataset #datasets is huggingface's dataset package\n",
"from peft import get_peft_model, LoraConfig, TaskType\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"import PIL\n",
"\n",
"import lm_eval"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "2e1b8342-5173-4769-befe-f7b223b55bdb",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4bbdb7ede23f4270936e8dd44eddaf80",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"model.safetensors.index.json: 0%| | 0.00/23.9k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a243af727b72473f92b73655c02e99b2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Fetching 4 files: 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2a5cff447f3d432e8c2cd09e5f300eb1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"model-00001-of-00004.safetensors: 0%| | 0.00/4.98G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8152bab4fba2498ab1c329c218bc5a69",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"model-00004-of-00004.safetensors: 0%| | 0.00/1.17G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "36ca4d5a7a934c06b0633212e77f0549",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"model-00002-of-00004.safetensors: 0%| | 0.00/5.00G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "88435538f5cb43e992ac4ed4735b1fb0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"model-00003-of-00004.safetensors: 0%| | 0.00/4.92G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c03c2b9db40b4e84b2fa1a5e34b29fca",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Loading checkpoint shards: 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0facfe4509ad491a8f3faf5630924ab1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"generation_config.json: 0%| | 0.00/124 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"tokenizer = AutoTokenizer.from_pretrained(\"TheFinAI/Fino1-8B\")\n",
"model = AutoModelForCausalLM.from_pretrained(\"ThinkTim21/FinPlan-1\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "6c71bde4-febf-420d-af03-fc66884fca74",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Prepare the model and tokenizer \n",
"tokenizer.pad_token = tokenizer.eos_token # set padding token to EOS token\n",
"model.config.poad_token_id = tokenizer.pad_token_id # set the padding token for model"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "58d314e6-5d05-40f4-abbd-33745b98a1b7",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"budget = pd.read_csv(\"budget_dataset.csv\")\n",
"goals = pd.read_csv(\"goals_dataset.csv\")\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "a2639954-4a6a-421c-8353-c12a1825833e",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"budget['instruct_lora'] = budget.apply(\n",
" lambda row: f\"Q: {row['question']}\\n\\nA: \",\n",
" axis=1\n",
")\n",
"\n",
"goals['instruct_lora'] = goals.apply(\n",
" lambda row: f\"Q: {row['question']}\\n\\nA: \",\n",
" axis=1\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "381c73e0-65ac-457e-9af9-8b6be214284f",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "48c03562b88f4f8c833c4c16c2b62725",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Map: 0%| | 0/2500 [00:00<?, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "384114c4a98e4c9cb4bdaaefeb07bedf",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Map: 0%| | 0/500 [00:00<?, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from datasets import load_dataset, Dataset #datasets is huggingface's dataset package\n",
"budget = budget.sample(frac = 1, random_state = 42) # randomly shuffle DF\n",
"train_budget = budget[:2500]\n",
"val_budget = budget[2500:]\n",
"train_budget = Dataset.from_pandas(train_budget)\n",
"val_budget = Dataset.from_pandas(val_budget)\n",
"train_budget = train_budget.map(lambda samples: tokenizer(samples['instruct']), batched = True)\n",
"val_budget = val_budget.map(lambda samples: tokenizer(samples['instruct']), batched = True)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "383bb5d8-122a-41f3-9955-25357326c6d8",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9182c49cc3b941c9814b050ff0bec026",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Map: 0%| | 0/2500 [00:00<?, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bd3814a7314842e6bac6f6fc201bc36a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Map: 0%| | 0/500 [00:00<?, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"goals = goals.sample(frac = 1, random_state = 42) # randomly shuffle DF\n",
"train_goals = goals[:2500]\n",
"val_goals = goals[2500:]\n",
"train_goals = Dataset.from_pandas(train_goals)\n",
"val_goals = Dataset.from_pandas(val_goals)\n",
"train_goals = train_goals.map(lambda samples: tokenizer(samples['instruct']), batched = True)\n",
"val_goals = val_goals.map(lambda samples: tokenizer(samples['instruct']), batched = True)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "4ae2b8aa-55bb-4e9c-b93b-c7040c7d3ed3",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/scratch/tar3kh/llm_course_2/lib/python3.11/site-packages/transformers/generation/configuration_utils.py:631: UserWarning: `do_sample` is set to `False`. However, `temperature` is set to `0.6` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `temperature`.\n",
" warnings.warn(\n",
"/scratch/tar3kh/llm_course_2/lib/python3.11/site-packages/transformers/generation/configuration_utils.py:636: UserWarning: `do_sample` is set to `False`. However, `top_p` is set to `0.9` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `top_p`.\n",
" warnings.warn(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Q: My short term goal is to save for a $1774 vacation in the next year, my medium term goal is to save for down payment for a new car, around 5227 in the next 2 or 3 years, and my long term goal is to save for a down payment for a house around 151861 in the next ten years, can you help me integrate these goals into my budget as well as where I should store these savings?\n",
"\n",
"A: Thinking\n",
"\n",
"Alright, let's figure out how to make these savings goals work with your budget. First, I want to make sure I understand what you're aiming for. You've got three goals: saving for a vacation, a new car, and eventually a house. Let's break each down.\n",
"\n",
"For the vacation, you're looking to save $1774 in the next year. That's a pretty manageable goal, especially if you break it down into monthly chunks. Let's see, $1774 divided by 12 months gives you about $147.83 per month. Not too bad, right?\n",
"\n",
"Next up is saving for a new car. You're aiming for $5227 in 2-3 years. That's a bit longer, so let's spread it out. If you divide $5227 by 24 months, you get about $218.08 per month. That's a bit more than the vacation savings, but still doable.\n",
"\n",
"Now, onto the big one: saving for a house down payment. You're looking at $151,861 in ten years. That's a long-term goal, so let's think about it in terms of monthly contributions. If you divide $151,861 by 120 months, you get about $1265.09 per month. That's a significant amount, but it's spread out over ten years, so it's manageable.\n",
"\n",
"Okay, now let's think about where to store these savings. For the vacation fund, you could just keep it in a separate savings account at your bank. It's easy to access and won't earn much interest, but it's perfect for short-term goals.\n",
"\n",
"For the car fund, you might consider a high-yield savings account. It'll earn a bit more interest than a regular savings account, and it's still easily accessible.\n",
"\n",
"The house fund is a different story. Since it's a long-term goal, you might want to consider a dedicated savings account or even a certificate of deposit (CD) with a longer term. This will help you avoid dipping into the funds for other expenses and earn a bit more interest over time.\n",
"\n",
"Let's recap. For the vacation, keep it simple with a regular savings account. For the car, a high-yield savings account should work. And for the house, consider a dedicated savings account or a CD. Now, let's make sure you're on track to meet these goals by regularly reviewing your progress and adjusting as needed.\n",
"\n",
"Oh, and don't forget to automate these transfers so you don't miss a payment. Set up monthly transfers from your checking account to each of these savings accounts, and you'll be on your way to achieving these goals in no time!\n",
"\n",
"## Final Response\n",
"\n",
"To integrate these savings goals into your budget, let's break down each goal into manageable monthly contributions. \n",
"\n",
"1. **Vacation Savings**: Save $1774 in the next year. Divide this by 12 months: approximately $147.83 per month.\n",
"2. **Car Savings**: Save $5227 in 2-3 years. Divide this by 24 months: approximately $218.08 per month.\n",
"3. **House Savings**: Save $151,861 in ten years. Divide this by 120 months: approximately $1265.09 per month.\n",
"\n",
"For storing these savings, consider the following:\n",
"\n",
"- **Vacation Fund**: Keep in a separate savings account at your bank for easy access.\n",
"- **Car Fund**: Use a high-yield savings account to earn a bit more interest.\n",
"- **House Fund**: Consider a dedicated savings account or a certificate of deposit (CD) with a longer term to avoid dipping into the funds and earn more interest over time.\n",
"\n",
"To ensure you're on track, automate monthly transfers from your checking account to each of these savings accounts. Regularly review your progress and adjust as needed to meet these goals. By following this plan, you'll be well on your way to achieving your savings objectives.\n"
]
}
],
"source": [
"formatted_prompt = f\"Q: {val_goals[0]['question']}\\n\\nA: \"\n",
"inputs = tokenizer.encode(formatted_prompt, return_tensors = \"pt\").to(model.device)\n",
"output = model.generate(inputs, max_new_tokens = 800, pad_token_id = tokenizer.pad_token_id, do_sample = False)\n",
"generated_text = tokenizer.decode(output[0], skip_special_tokens = True)\n",
"print(generated_text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "706fdd9f-ea8d-4ef5-9bd2-a4709dfb75cf",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"formatted_prompt = f\"Q: {val_budget[0]['question']}\\n\\nA: \"\n",
"inputs = tokenizer.encode(formatted_prompt, return_tensors = \"pt\").to(model.device)\n",
"output = model.generate(inputs, max_new_tokens = 800, pad_token_id = tokenizer.pad_token_id, do_sample = False)\n",
"generated_text = tokenizer.decode(output[0], skip_special_tokens = True)\n",
"print(generated_text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9444cd08-5469-432f-adba-5cf95068d5b5",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "llm_course_2",
"language": "python",
"name": "llm_course_2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|