File size: 4,715 Bytes
7766b8e
 
 
 
 
ba2a039
7766b8e
 
7d464d8
1011ea0
7766b8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da420ac
 
93900c5
7766b8e
 
 
f7baf62
7766b8e
 
 
 
 
 
 
 
 
 
 
 
 
f5db075
7766b8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ade2e09
7766b8e
 
 
 
 
 
 
 
21a480e
7766b8e
 
 
 
4143be0
 
 
 
 
b6454aa
 
 
4143be0
6aebbc5
7766b8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d93b81
 
 
7766b8e
 
 
 
 
 
 
c1e6f35
4df7a38
765e122
50206fc
 
7766b8e
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
license: apache-2.0
base_model:
- black-forest-labs/FLUX.1-dev
base_model_relation: quantized
pipeline_tag: text-to-image
---


# Elastic model: Fastest self-serving models. FLUX.1-dev.

Elastic models are the models produced by TheStage AI ANNA: Automated Neural Networks Accelerator. ANNA allows you to control model size, latency and quality with a simple slider movement. For each model, ANNA produces a series of optimized models:

* __XL__: Mathematically equivalent neural network, optimized with our DNN compiler. 

* __L__: Near lossless model, with less than 1% degradation obtained on corresponding benchmarks.

* __M__: Faster model, with accuracy degradation less than 1.5%.

* __S__: The fastest model, with accuracy degradation less than 2%.


__Goals of Elastic Models:__

* Provide the fastest models and service for self-hosting.
* Provide flexibility in cost vs quality selection for inference.
* Provide clear quality and latency benchmarks.
* Provide interface of HF libraries: transformers and diffusers with a single line of code.
* Provide models supported on a wide range of hardware, which are pre-compiled and require no JIT.

> It's important to note that specific quality degradation can vary from model to model. For instance, with an S model, you can have 0.5% degradation as well.

-----


![image/png](https://cdn-uploads.huggingface.co/production/uploads/67991798ae62bd1f17cc22ed/2FXY0tqSGqZq76j5Tz4Vi.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6799fc8e150f5a4014b030ca/CuuzzA_csoRnzbaZq1U1x.png)

## Inference

Currently, our demo model only supports 1024x1024, 768x768 and 512x512 outputs without batching (for B200 - only 1024x1024). This will be updated in the near future.
To infer our models, you just need to replace `diffusers` import with `elastic_models.diffusers`:

```python
import torch
from elastic_models.diffusers import FluxPipeline

mode_name = 'black-forest-labs/FLUX.1-dev'
hf_token = ''
device = torch.device("cuda")

pipeline = FluxPipeline.from_pretrained(
    mode_name,
    torch_dtype=torch.bfloat16,
    token=hf_token,
    mode='S'
)
pipeline.to(device)

prompts = ["Kitten eating a banana"]
output = pipeline(prompt=prompts)

for prompt, output_image in zip(prompts, output.images):
    output_image.save((prompt.replace(' ', '_') + '.png'))
```

### Installation


__System requirements:__
* GPUs: H100, L40s, B200
* CPU: AMD, Intel
* Python: 3.10-3.12


To work with our models just run these lines in your terminal:

```shell
pip install thestage
pip install elastic_models[nvidia]\
 --index-url https://thestage.jfrog.io/artifactory/api/pypi/pypi-thestage-ai-production/simple\
 --extra-index-url https://pypi.nvidia.com\
 --extra-index-url https://pypi.org/simple

# or for blackwell support
pip install elastic_models[blackwell]\
 --index-url https://thestage.jfrog.io/artifactory/api/pypi/pypi-thestage-ai-production/simple\
 --extra-index-url https://pypi.nvidia.com\
 --extra-index-url https://pypi.org/simple
pip install -U --pre torch --index-url https://download.pytorch.org/whl/nightly/cu128
pip install -U --pre torchvision --index-url https://download.pytorch.org/whl/nightly/cu128


pip install flash_attn==2.7.3 --no-build-isolation
pip uninstall apex
```

Then go to [app.thestage.ai](https://app.thestage.ai), login and generate API token from your profile page. Set up API token as follows:

```shell
thestage config set --api-token <YOUR_API_TOKEN>
```

Congrats, now you can use accelerated models!

----

## Benchmarks

Benchmarking is one of the most important procedures during model acceleration. We aim to provide clear performance metrics for models using our algorithms.

### Quality benchmarks

For quality evaluation we have used: PSNR, SSIM and CLIP score. PSNR and SSIM were computed using outputs of original model.
| Metric/Model  | S | M | L | XL | Original |
|---------------|---|---|---|----|----------|
| PSNR          | 30.22 | 30.24 | 30.38 | inf  | inf |
| SSIM          | 0.72 | 0.72 | 0.76 | 1.0  | 1.0 |
| CLIP          | 12.49 | 12.51 | 12.69 | 12.41  | 12.41|


### Latency benchmarks

Time in seconds to generate one image 1024x1024
| GPU/Model | S   | M | L | XL | Original |
|-----------|-----|---|---|----|----------|
| H100      | 2.71 | 3.0 | 3.18 | 4.17  | 6.46 | 
| L40s      | 8.5  | 9.29 | 9.29 | 13.2  | 16|
| B200      | 1.89  | 2.04 | 2.12 | 2.23  | 4.4|
| GeForce RTX 5090      | 5.53  | - | - | -  | -|


## Links

* __Platform__: [app.thestage.ai](https://app.thestage.ai)
<!-- * __Elastic models Github__: [app.thestage.ai](app.thestage.ai) -->
* __Subscribe for updates__: [TheStageAI X](https://x.com/TheStageAI)
* __Contact email__: contact@thestage.ai