Safetensors
qwen2
LRM
hybrid_reasoning
efficient_reasoning
File size: 3,888 Bytes
6f7e284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: mit
datasets:
- agentica-org/DeepScaleR-Preview-Dataset
base_model:
- deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
tags:
- LRM
- hybrid_reasoning
- efficient_reasoning
---

# AdaptThink: LLM Can Learn When to Think

<p align="center">
    🤗 <a href="https://huggingface.co/collections/THU-KEG/adaptthink-682a1059aa9f5102c4fa0470" target="_blank">HF Collections</a> • 💻 <a href="" target="_blank">Github Repo</a> • 📃 <a href="https://arxiv.org/abs/2505.13417" target="_blank">Paper</a>
</p>

## 🔍 Table of Contents
- [🤖️ AdaptThink](#adapt_think)
- [⚙️ Released Models](#model)
- [📊 Evaluation](#evaluation)
- [📝 Citation](#citation)

<a name="adapt_think"></a>
## 🤖️ AdaptThink
We present **AdapThink**, a novel reinforcement learning (RL) algorithm that enables reasoning models to adaptively choose between **Thinking** and **NoThinking** modes according to the difficulty of each input problem, thereby achieving automatic hybrid reasoning. Specifically, the model engages in thinking only when the problem is determined to be challenging; for other simple question, it will bypass the thinking process and directly produce a concise final solution. This approach substantially reduces inference costs while further improving overall performance.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/66cdd285c51a915bd5f2d017/JaeJiBwLkcwAuexRAkLX5.png)



<a name="model"></a>
## ⚙️ Released Models

### All Available Datasets and Models
We apply the AdaptThink algorithm on DeepSeek-R1-Distill-Qwen-1.5B with $\delta$ from 0 to 0.1, and DeepSeek-R1-Distill-Qwen-7B with $\delta=0.05$. A larger $\large$ results in a higher proportion of NoThinking responses, which reduces more inference costs but also diminish the resultant improvement in accuracy.

All the trained models are available on HuggingFace. 


| Name | HF Repo |
|---|---|
| AdaptThink-1.5B-delta0 | [🤗 HF Repo](https://huggingface.co/THU-KEG/AdaptThink-1.5B-delta0) |
| AdaptThink-1.5B-delta0.01 | [🤗 HF Repo](https://huggingface.co/THU-KEG/AdaptThink-1.5B-delta0.01) |
| AdaptThink-1.5B-delta0.02 | [🤗 HF Repo](https://huggingface.co/THU-KEG/AdaptThink-1.5B-delta0.02) |
| AdaptThink-1.5B-delta0.05 | [🤗 HF Repo](https://huggingface.co/THU-KEG/AdaptThink-1.5B-delta0.05) |
| AdaptThink-1.5B-delta0.075 | [🤗 HF Repo](https://huggingface.co/THU-KEG/AdaptThink-1.5B-delta0.075) |
| AdaptThink-1.5B-delta0.1 | [🤗 HF Repo](https://huggingface.co/THU-KEG/AdaptThink-1.5B-delta0.1) |
| AdaptThink-7B-delta0.05 | [🤗 HF Repo](https://huggingface.co/THU-KEG/AdaptThink-7B-delta0.05) |

<a name="training"></a>

## 📊 Evaluation Results

We list our evaluation results as follows:
##### 1.  Comparison with existing methods for efficient reasoning on mathematics datasets

![image/png](https://cdn-uploads.huggingface.co/production/uploads/66cdd285c51a915bd5f2d017/ZLV8ZfEet1dp-4jyzBxiG.png)

##### 2. Nothinking responses ratio and accuracy across different difficulty levels on MATH500

![image/png](https://cdn-uploads.huggingface.co/production/uploads/66cdd285c51a915bd5f2d017/GUNfW9qO2aaT9_lo1XXPf.png)

##### 3. Comparison of different $\delta$ values

![image/png](https://cdn-uploads.huggingface.co/production/uploads/66cdd285c51a915bd5f2d017/RXrXwxVSAYlR3-_t0GUwV.png)

##### 4. Evaluation results on MMLU

<img width="1000" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/66cdd285c51a915bd5f2d017/19K2u6PNmYz3gx3JnHgn4.png">

<a name="citation"></a>
## 📝 Citation

If you find our work useful, please consider citing LongReward:

```
@article{zhang2025adapt_think,
  title = {AdaptThink: LLM Can Learn When to Think} 
  author={Jiajie Zhang and Nianyi Lin and Lei Hou and Ling Feng and Juanzi Li},
  journal={arXiv preprint arXiv: 2505.13417},
  url={https://arxiv.org/abs/2505.13417}
  year={2025}
}
```