import torch from torch import nn from torch.nn import functional as F import lib.extractors as extractors class PSPModule(nn.Module): def __init__(self, features, out_features=1024, sizes=(1, 2, 3, 6)): super(PSPModule, self).__init__() self.stages = [] self.stages = nn.ModuleList([self._make_stage(features, size) for size in sizes]) self.bottleneck = nn.Conv2d(features * (len(sizes) + 1), out_features, kernel_size=1) self.relu = nn.ReLU() def _make_stage(self, features, size): prior = nn.AdaptiveAvgPool2d(output_size=(size, size)) conv = nn.Conv2d(features, features, kernel_size=1, bias=False) return nn.Sequential(prior, conv) def forward(self, feats): h, w = feats.size(2), feats.size(3) priors = [F.upsample(input=stage(feats), size=(h, w), mode='bilinear') for stage in self.stages] + [feats] bottle = self.bottleneck(torch.cat(priors, 1)) return self.relu(bottle) class PSPUpsample(nn.Module): def __init__(self, in_channels, out_channels): super(PSPUpsample, self).__init__() self.conv = nn.Sequential( nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), nn.Conv2d(in_channels, out_channels, 3, padding=1), nn.PReLU() ) def forward(self, x): return self.conv(x) class PSPNet(nn.Module): def __init__(self, n_classes=21, sizes=(1, 2, 3, 6), psp_size=2048, deep_features_size=1024, backend='resnet18', pretrained=False): super(PSPNet, self).__init__() self.feats = getattr(extractors, backend)(pretrained) self.psp = PSPModule(psp_size, 1024, sizes) self.drop_1 = nn.Dropout2d(p=0.3) self.up_1 = PSPUpsample(1024, 256) self.up_2 = PSPUpsample(256, 64) self.up_3 = PSPUpsample(64, 64) self.drop_2 = nn.Dropout2d(p=0.15) self.final = nn.Sequential( nn.Conv2d(64, 32, kernel_size=1), nn.LogSoftmax() ) self.classifier = nn.Sequential( nn.Linear(deep_features_size, 256), nn.ReLU(), nn.Linear(256, n_classes) ) def forward(self, x): f, class_f = self.feats(x) p = self.psp(f) p = self.drop_1(p) p = self.up_1(p) p = self.drop_2(p) p = self.up_2(p) p = self.drop_2(p) p = self.up_3(p) return self.final(p)