File size: 6,526 Bytes
29858c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import _init_paths
import argparse
import os
import random
import numpy as np
import yaml
import copy
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
from torch.autograd import Variable
from datasets.linemod.dataset import PoseDataset as PoseDataset_linemod
from lib.network import PoseNet, PoseRefineNet
from lib.loss import Loss
from lib.loss_refiner import Loss_refine
from lib.transformations import euler_matrix, quaternion_matrix, quaternion_from_matrix
from lib.knn.__init__ import KNearestNeighbor

parser = argparse.ArgumentParser()
parser.add_argument('--dataset_root', type=str, default = '', help='dataset root dir')
parser.add_argument('--model', type=str, default = '',  help='resume PoseNet model')
parser.add_argument('--refine_model', type=str, default = '',  help='resume PoseRefineNet model')
opt = parser.parse_args()

num_objects = 13
objlist = [1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15]
num_points = 500
iteration = 4
bs = 1
dataset_config_dir = 'datasets/linemod/dataset_config'
output_result_dir = 'experiments/eval_result/linemod'
knn = KNearestNeighbor(1)

estimator = PoseNet(num_points = num_points, num_obj = num_objects)
estimator.cuda()
refiner = PoseRefineNet(num_points = num_points, num_obj = num_objects)
refiner.cuda()
estimator.load_state_dict(torch.load(opt.model))
refiner.load_state_dict(torch.load(opt.refine_model))
estimator.eval()
refiner.eval()

testdataset = PoseDataset_linemod('eval', num_points, False, opt.dataset_root, 0.0, True)
testdataloader = torch.utils.data.DataLoader(testdataset, batch_size=1, shuffle=False, num_workers=10)

sym_list = testdataset.get_sym_list()
num_points_mesh = testdataset.get_num_points_mesh()
criterion = Loss(num_points_mesh, sym_list)
criterion_refine = Loss_refine(num_points_mesh, sym_list)

diameter = []
meta_file = open('{0}/models_info.yml'.format(dataset_config_dir), 'r')
meta = yaml.load(meta_file)
for obj in objlist:
    diameter.append(meta[obj]['diameter'] / 1000.0 * 0.1)
print(diameter)

success_count = [0 for i in range(num_objects)]
num_count = [0 for i in range(num_objects)]
fw = open('{0}/eval_result_logs.txt'.format(output_result_dir), 'w')

for i, data in enumerate(testdataloader, 0):
    points, choose, img, target, model_points, idx = data
    if len(points.size()) == 2:
        print('No.{0} NOT Pass! Lost detection!'.format(i))
        fw.write('No.{0} NOT Pass! Lost detection!\n'.format(i))
        continue
    points, choose, img, target, model_points, idx = Variable(points).cuda(), \
                                                     Variable(choose).cuda(), \
                                                     Variable(img).cuda(), \
                                                     Variable(target).cuda(), \
                                                     Variable(model_points).cuda(), \
                                                     Variable(idx).cuda()

    pred_r, pred_t, pred_c, emb = estimator(img, points, choose, idx)
    pred_r = pred_r / torch.norm(pred_r, dim=2).view(1, num_points, 1)
    pred_c = pred_c.view(bs, num_points)
    how_max, which_max = torch.max(pred_c, 1)
    pred_t = pred_t.view(bs * num_points, 1, 3)

    my_r = pred_r[0][which_max[0]].view(-1).cpu().data.numpy()
    my_t = (points.view(bs * num_points, 1, 3) + pred_t)[which_max[0]].view(-1).cpu().data.numpy()
    my_pred = np.append(my_r, my_t)

    for ite in range(0, iteration):
        T = Variable(torch.from_numpy(my_t.astype(np.float32))).cuda().view(1, 3).repeat(num_points, 1).contiguous().view(1, num_points, 3)
        my_mat = quaternion_matrix(my_r)
        R = Variable(torch.from_numpy(my_mat[:3, :3].astype(np.float32))).cuda().view(1, 3, 3)
        my_mat[0:3, 3] = my_t
        
        new_points = torch.bmm((points - T), R).contiguous()
        pred_r, pred_t = refiner(new_points, emb, idx)
        pred_r = pred_r.view(1, 1, -1)
        pred_r = pred_r / (torch.norm(pred_r, dim=2).view(1, 1, 1))
        my_r_2 = pred_r.view(-1).cpu().data.numpy()
        my_t_2 = pred_t.view(-1).cpu().data.numpy()
        my_mat_2 = quaternion_matrix(my_r_2)
        my_mat_2[0:3, 3] = my_t_2

        my_mat_final = np.dot(my_mat, my_mat_2)
        my_r_final = copy.deepcopy(my_mat_final)
        my_r_final[0:3, 3] = 0
        my_r_final = quaternion_from_matrix(my_r_final, True)
        my_t_final = np.array([my_mat_final[0][3], my_mat_final[1][3], my_mat_final[2][3]])

        my_pred = np.append(my_r_final, my_t_final)
        my_r = my_r_final
        my_t = my_t_final

    # Here 'my_pred' is the final pose estimation result after refinement ('my_r': quaternion, 'my_t': translation)

    model_points = model_points[0].cpu().detach().numpy()
    my_r = quaternion_matrix(my_r)[:3, :3]
    pred = np.dot(model_points, my_r.T) + my_t
    target = target[0].cpu().detach().numpy()

    if idx[0].item() in sym_list:
        pred = torch.from_numpy(pred.astype(np.float32)).cuda().transpose(1, 0).contiguous()
        target = torch.from_numpy(target.astype(np.float32)).cuda().transpose(1, 0).contiguous()
        inds = knn(target.unsqueeze(0), pred.unsqueeze(0))
        target = torch.index_select(target, 1, inds.view(-1) - 1)
        dis = torch.mean(torch.norm((pred.transpose(1, 0) - target.transpose(1, 0)), dim=1), dim=0).item()
    else:
        dis = np.mean(np.linalg.norm(pred - target, axis=1))

    if dis < diameter[idx[0].item()]:
        success_count[idx[0].item()] += 1
        print('No.{0} Pass! Distance: {1}'.format(i, dis))
        fw.write('No.{0} Pass! Distance: {1}\n'.format(i, dis))
    else:
        print('No.{0} NOT Pass! Distance: {1}'.format(i, dis))
        fw.write('No.{0} NOT Pass! Distance: {1}\n'.format(i, dis))
    num_count[idx[0].item()] += 1

for i in range(num_objects):
    print('Object {0} success rate: {1}'.format(objlist[i], float(success_count[i]) / num_count[i]))
    fw.write('Object {0} success rate: {1}\n'.format(objlist[i], float(success_count[i]) / num_count[i]))
print('ALL success rate: {0}'.format(float(sum(success_count)) / sum(num_count)))
fw.write('ALL success rate: {0}\n'.format(float(sum(success_count)) / sum(num_count)))
fw.close()