File size: 8,894 Bytes
29858c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
/** Modifed version of knn-CUDA from https://github.com/vincentfpgarcia/kNN-CUDA
* The modifications are
* removed texture memory usage
* removed split query KNN computation
* added feature extraction with bilinear interpolation
*
* Last modified by Christopher B. Choy <chrischoy@ai.stanford.edu> 12/23/2016
*/
// Includes
#include <cstdio>
#include "cuda.h"
#include "knn_cuda_kernel.h"
// Constants used by the program
#define BLOCK_DIM 16
#define DEBUG 0
/**
* Computes the distance between two matrix A (reference points) and
* B (query points) containing respectively wA and wB points.
*
* @param A pointer on the matrix A
* @param wA width of the matrix A = number of points in A
* @param B pointer on the matrix B
* @param wB width of the matrix B = number of points in B
* @param dim dimension of points = height of matrices A and B
* @param AB pointer on the matrix containing the wA*wB distances computed
*/
__global__ void cuComputeDistanceGlobal( float* A, int wA,
float* B, int wB, int dim, float* AB){
// Declaration of the shared memory arrays As and Bs used to store the sub-matrix of A and B
__shared__ float shared_A[BLOCK_DIM][BLOCK_DIM];
__shared__ float shared_B[BLOCK_DIM][BLOCK_DIM];
// Sub-matrix of A (begin, step, end) and Sub-matrix of B (begin, step)
__shared__ int begin_A;
__shared__ int begin_B;
__shared__ int step_A;
__shared__ int step_B;
__shared__ int end_A;
// Thread index
int tx = threadIdx.x;
int ty = threadIdx.y;
// Other variables
float tmp;
float ssd = 0;
// Loop parameters
begin_A = BLOCK_DIM * blockIdx.y;
begin_B = BLOCK_DIM * blockIdx.x;
step_A = BLOCK_DIM * wA;
step_B = BLOCK_DIM * wB;
end_A = begin_A + (dim-1) * wA;
// Conditions
int cond0 = (begin_A + tx < wA); // used to write in shared memory
int cond1 = (begin_B + tx < wB); // used to write in shared memory & to computations and to write in output matrix
int cond2 = (begin_A + ty < wA); // used to computations and to write in output matrix
// Loop over all the sub-matrices of A and B required to compute the block sub-matrix
for (int a = begin_A, b = begin_B; a <= end_A; a += step_A, b += step_B) {
// Load the matrices from device memory to shared memory; each thread loads one element of each matrix
if (a/wA + ty < dim){
shared_A[ty][tx] = (cond0)? A[a + wA * ty + tx] : 0;
shared_B[ty][tx] = (cond1)? B[b + wB * ty + tx] : 0;
}
else{
shared_A[ty][tx] = 0;
shared_B[ty][tx] = 0;
}
// Synchronize to make sure the matrices are loaded
__syncthreads();
// Compute the difference between the two matrixes; each thread computes one element of the block sub-matrix
if (cond2 && cond1){
for (int k = 0; k < BLOCK_DIM; ++k){
tmp = shared_A[k][ty] - shared_B[k][tx];
ssd += tmp*tmp;
}
}
// Synchronize to make sure that the preceding computation is done before loading two new sub-matrices of A and B in the next iteration
__syncthreads();
}
// Write the block sub-matrix to device memory; each thread writes one element
if (cond2 && cond1)
AB[(begin_A + ty) * wB + begin_B + tx] = ssd;
}
/**
* Gathers k-th smallest distances for each column of the distance matrix in the top.
*
* @param dist distance matrix
* @param ind index matrix
* @param width width of the distance matrix and of the index matrix
* @param height height of the distance matrix and of the index matrix
* @param k number of neighbors to consider
*/
__global__ void cuInsertionSort(float *dist, long *ind, int width, int height, int k){
// Variables
int l, i, j;
float *p_dist;
long *p_ind;
float curr_dist, max_dist;
long curr_row, max_row;
unsigned int xIndex = blockIdx.x * blockDim.x + threadIdx.x;
if (xIndex<width){
// Pointer shift, initialization, and max value
p_dist = dist + xIndex;
p_ind = ind + xIndex;
max_dist = p_dist[0];
p_ind[0] = 1;
// Part 1 : sort kth firt elementZ
for (l=1; l<k; l++){
curr_row = l * width;
curr_dist = p_dist[curr_row];
if (curr_dist<max_dist){
i=l-1;
for (int a=0; a<l-1; a++){
if (p_dist[a*width]>curr_dist){
i=a;
break;
}
}
for (j=l; j>i; j--){
p_dist[j*width] = p_dist[(j-1)*width];
p_ind[j*width] = p_ind[(j-1)*width];
}
p_dist[i*width] = curr_dist;
p_ind[i*width] = l+1;
} else {
p_ind[l*width] = l+1;
}
max_dist = p_dist[curr_row];
}
// Part 2 : insert element in the k-th first lines
max_row = (k-1)*width;
for (l=k; l<height; l++){
curr_dist = p_dist[l*width];
if (curr_dist<max_dist){
i=k-1;
for (int a=0; a<k-1; a++){
if (p_dist[a*width]>curr_dist){
i=a;
break;
}
}
for (j=k-1; j>i; j--){
p_dist[j*width] = p_dist[(j-1)*width];
p_ind[j*width] = p_ind[(j-1)*width];
}
p_dist[i*width] = curr_dist;
p_ind[i*width] = l+1;
max_dist = p_dist[max_row];
}
}
}
}
/**
* Computes the square root of the first line (width-th first element)
* of the distance matrix.
*
* @param dist distance matrix
* @param width width of the distance matrix
* @param k number of neighbors to consider
*/
__global__ void cuParallelSqrt(float *dist, int width, int k){
unsigned int xIndex = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int yIndex = blockIdx.y * blockDim.y + threadIdx.y;
if (xIndex<width && yIndex<k)
dist[yIndex*width + xIndex] = sqrt(dist[yIndex*width + xIndex]);
}
//-----------------------------------------------------------------------------------------------//
// K-th NEAREST NEIGHBORS //
//-----------------------------------------------------------------------------------------------//
/**
* K nearest neighbor algorithm
* - Initialize CUDA
* - Allocate device memory
* - Copy point sets (reference and query points) from host to device memory
* - Compute the distances + indexes to the k nearest neighbors for each query point
* - Copy distances from device to host memory
*
* @param ref_host reference points ; pointer to linear matrix
* @param ref_nb number of reference points ; width of the matrix
* @param query_host query points ; pointer to linear matrix
* @param query_nb number of query points ; width of the matrix
* @param dim dimension of points ; height of the matrices
* @param k number of neighbor to consider
* @param dist_host distances to k nearest neighbors ; pointer to linear matrix
* @param dist_host indexes of the k nearest neighbors ; pointer to linear matrix
*
*/
void knn_device(float* ref_dev, int ref_nb, float* query_dev, int query_nb,
int dim, int k, float* dist_dev, long* ind_dev, cudaStream_t stream){
// Grids and threads
dim3 g_16x16(query_nb/16, ref_nb/16, 1);
dim3 t_16x16(16, 16, 1);
if (query_nb%16 != 0) g_16x16.x += 1;
if (ref_nb %16 != 0) g_16x16.y += 1;
//
dim3 g_256x1(query_nb/256, 1, 1);
dim3 t_256x1(256, 1, 1);
if (query_nb%256 != 0) g_256x1.x += 1;
dim3 g_k_16x16(query_nb/16, k/16, 1);
dim3 t_k_16x16(16, 16, 1);
if (query_nb%16 != 0) g_k_16x16.x += 1;
if (k %16 != 0) g_k_16x16.y += 1;
// Kernel 1: Compute all the distances
cuComputeDistanceGlobal<<<g_16x16, t_16x16, 0, stream>>>(ref_dev, ref_nb,
query_dev, query_nb, dim, dist_dev);
// Kernel 2: Sort each column
cuInsertionSort<<<g_256x1, t_256x1, 0, stream>>>(dist_dev, ind_dev,
query_nb, ref_nb, k);
// Kernel 3: Compute square root of k first elements
// cuParallelSqrt<<<g_k_16x16,t_k_16x16, 0, stream>>>(dist_dev, query_nb, k);
#if DEBUG
unsigned int size_of_float = sizeof(float);
unsigned long size_of_long = sizeof(long);
float* dist_host = new float[query_nb * k];
long* idx_host = new long[query_nb * k];
// Memory copy of output from device to host
cudaMemcpy(&dist_host[0], dist_dev,
query_nb * k *size_of_float, cudaMemcpyDeviceToHost);
cudaMemcpy(&idx_host[0], ind_dev,
query_nb * k * size_of_long, cudaMemcpyDeviceToHost);
int i = 0;
for(i = 0; i < 100; i++){
printf("IDX[%d]: %d\n", i, (int)idx_host[i]);
}
#endif
}
|