File size: 2,729 Bytes
fbd8cff f1eae87 fbd8cff 0ca6063 fbd8cff f1eae87 fbd8cff 14d6cc7 fbd8cff f1eae87 a4d1825 f1eae87 fbd8cff f1eae87 fbd8cff f1eae87 fbd8cff f1eae87 fbd8cff f1eae87 fbd8cff f1eae87 fbd8cff f1eae87 fbd8cff f1eae87 fbd8cff f1eae87 7417fc8 f1eae87 fbd8cff f1eae87 fbd8cff f1eae87 fbd8cff f1eae87 fbd8cff f1eae87 fbd8cff f1eae87 fbd8cff f1eae87 fbd8cff f1eae87 fbd8cff f1eae87 fbd8cff f1eae87 fbd8cff 675c90f fbd8cff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
---
base_model: unsloth/Qwen3-0.6B
library_name: peft
license: mit
datasets:
- unsloth/OpenMathReasoning-mini
- mlabonne/FineTome-100k
language:
- en
pipeline_tag: question-answering
tags:
- Math
---
# Model Card for Qwen3-0.6B-OpenMathReason
### Model Description
This model is fine-tuned version of Qwen/Qwen3-0.6B using the Unsloth library and LoRA for parameter-efficient training.
This model is trained on two datasets:
- unsloth/OpenMathReason-mini — for enhancing mathematical reasoning skills.
- mlabonne/FineTome-100k — to improve general conversational abilities.
#### Model Details
- **Developed by:** Rustam Shiriyev
- **Language(s) (NLP):** English
- **License:** MIT
- **Finetuned from model:** unsloth/Qwen3-0.6B
## Uses
### Direct Use
This model can be used as a lightweight assistant capable of solving basic to intermediate math problems (OpenMathReason tasks).
### Downstream Use
- Can be integrated into educational chatbots for STEM learning.
### Out-of-Scope Use
- Not suitable for high-stakes decision-making.
## Bias, Risks, and Limitations
- Mathematical reasoning is limited to the scope of the OpenMathReason-mini dataset.
- Conversational quality may degrade with complex or multi-turn inputs.
## How to Get Started with the Model
```python
from transformers import TextStreamer
from huggingface_hub import login
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
login(token="")
tokenizer = AutoTokenizer.from_pretrained("unsloth/Qwen3-0.6B",)
base_model = AutoModelForCausalLM.from_pretrained(
"unsloth/Qwen3-0.6B",
device_map={"": 0}, token=""
)
model = PeftModel.from_pretrained(base_model,"Rustamshry/Qwen3-0.6B-OpenMathReason")
question = "Solve (x + 2)^2 = 0"
messages = [
{"role" : "user", "content" : question}
]
text = tokenizer.apply_chat_template(
messages,
tokenize = False,
add_generation_prompt = True,
enable_thinking = True,
)
_ = model.generate(
**tokenizer(text, return_tensors = "pt").to(model.device),
max_new_tokens = 2048,
temperature = 0.6, top_p = 0.95, top_k = 20,
streamer = TextStreamer(tokenizer, skip_prompt = True),
)
```
## Training Details
### Training Data
- unsloth/OpenMathReason-mini: 10k+ instruction-following examples focused on math.
- mlabonne/FineTome-100k: 100k examples of diverse, high-quality chat data.
### Training Procedure
- batch size=8,
- gradient accumulation steps=2,
- optimizer=adamw_torch,
- learning rate=2e-5,
- warmup steps=100,
- fp16=True,
- dataloader_num_workers=16,
- num_train_epochs=1,
- weight_decay=0.01,
- lr_scheduler_type = "linear"
### Results
- Loss Value >> 0.56
### Framework versions
- PEFT 0.14.0 |