File size: 6,377 Bytes
1ca0fc3 5920ac4 c3caa13 1ca0fc3 c3caa13 1ca0fc3 c3caa13 1ca0fc3 c3caa13 1ca0fc3 c3caa13 d2ec44e 1ca0fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
---
license: apache-2.0
base_model: mistralai/Mistral-Small-24B-Instruct-2501
tags:
- mistral
- reasoning
- fine-tuned
- synthetic-thinking
- math
- science
- code
- puzzles
- lora
library_name: transformers
pipeline_tag: text-generation
datasets:
- open-thoughts/OpenThoughts-114k
language:
- en
---

# LogicFlow-Mistral-Small-24B-Reasoning
**LogicFlow-Mistral-Small-24B-Reasoning** is a fine-tuned version of [mistralai/Mistral-Small-24B-Instruct-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501) that has been enhanced for advanced reasoning and thinking tasks. This model was trained on the high-quality [OpenThoughts-114k](https://huggingface.co/datasets/open-thoughts/OpenThoughts-114k) dataset, which contains 114,000 synthetic reasoning examples covering mathematics, science, coding, and complex puzzles.
## π Model Overview
LogicFlow-Mistral-Small-24B-Reasoning excels at:
- **Step-by-step reasoning** across multiple domains
- **Mathematical problem solving** with detailed explanations
- **Scientific analysis** and conceptual understanding
- **Code generation and debugging** with logical thinking
- **Complex puzzle solving** requiring multi-step reasoning
The model has been fine-tuned to generate explicit thinking processes, making its reasoning transparent and interpretable.
## π Model Details
- **Base Model**: mistralai/Mistral-Small-24B-Instruct-2501
- **Parameters**: 24 billion
- **Architecture**: MistralForCausalLM
- **Context Length**: 32,768 tokens
- **Precision**: bfloat16
- **Fine-tuning Method**: LoRA (Low-Rank Adaptation)
- **Dataset**: OpenThoughts-114k (114,000 high-quality reasoning examples)
## π§ Training Configuration
- **LoRA Rank**: 8
- **LoRA Alpha**: 16
- **Learning Rate**: 5e-5
- **Batch Size**: 2 per device
- **Gradient Accumulation**: 8 steps
- **Training Epochs**: 5
- **Optimizer**: AdamW
- **Scheduler**: Cosine
- **Max Samples**: 100,000
- **Thinking Mode**: Enabled
## π Training Loss
The training process shows excellent convergence with consistent loss reduction across epochs:

*Training loss curve showing stable convergence during the fine-tuning process with OpenThoughts-114k dataset.*
## π» Usage
### Quick Start
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Load the model and tokenizer
model_name = "RekklesAI/LogicFlow-Mistral-Small-24B-Reasoning"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto"
)
# Example usage
prompt = "Solve this step by step: What is the derivative of x^3 + 2x^2 - 5x + 1?"
inputs = tokenizer(prompt, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=512,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```
### Chat Template
```python
messages = [
{"role": "user", "content": "Explain how to solve a quadratic equation using the quadratic formula."}
]
# Apply chat template
formatted_prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
inputs = tokenizer(formatted_prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=512)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
```
## π― Use Cases
### Mathematical Reasoning
- Solving complex equations step-by-step
- Proof verification and generation
- Statistical analysis and probability
- Calculus and advanced mathematics
### Scientific Analysis
- Physics problem solving
- Chemistry reaction mechanisms
- Biology concept explanations
- Data interpretation
### Code Development
- Algorithm design and optimization
- Debugging complex code issues
- Code review and improvement suggestions
- Technical architecture decisions
### Problem Solving
- Logic puzzles and brain teasers
- Strategic planning scenarios
- Decision analysis frameworks
- Creative problem-solving approaches
## π Performance
The model demonstrates significant improvements in reasoning tasks compared to the base model:
- Enhanced step-by-step problem decomposition
- More accurate mathematical computations
- Better code generation with explanations
- Improved logical consistency across responses
## β οΈ Limitations
- The model may occasionally generate verbose explanations
- Performance on extremely specialized domains may vary
- Responses should be verified for critical applications
- May require significant computational resources for inference
## π Training Data
The model was trained on the [OpenThoughts-114k](https://huggingface.co/datasets/open-thoughts/OpenThoughts-114k) dataset, which includes:
- **Mathematics**: Algebra, calculus, geometry, statistics
- **Science**: Physics, chemistry, biology concepts
- **Programming**: Algorithms, data structures, debugging
- **Logic**: Puzzles, reasoning challenges, problem-solving
The dataset contains high-quality synthetic examples with detailed reasoning traces, enabling the model to learn explicit thinking patterns.
## ποΈ Model Architecture
```
MistralForCausalLM(
- Hidden Size: 5,120
- Intermediate Size: 32,768
- Number of Layers: 40
- Attention Heads: 32
- Key-Value Heads: 8
- Vocabulary Size: 131,072
- Max Position Embeddings: 32,768
- RoPE Theta: 100,000,000
)
```
## π Citation
```bibtex
@misc{logicflowmistralsmall24breasoning,
title={LogicFlow-Mistral-Small-24B-Reasoning: A Reasoning-Enhanced Large Language Model},
author={[Xiangda Li]},
year={2025},
note={Fine-tuned from Mistral-Small-24B-Instruct-2501 using OpenThoughts-114k dataset}
}
```
## π License
This model is released under the Apache 2.0 License, following the base model's licensing terms.
## π Acknowledgments
- **Mistral AI** for the exceptional base model
- **OpenThoughts team** for the high-quality reasoning dataset
- **LLaMA-Factory** for the excellent fine-tuning framework
---
*Built with β€οΈ using [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory)* |