RedaAlami commited on
Commit
9006b27
·
verified ·
1 Parent(s): b4c2336

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: tiiuae/Falcon3-7B-Instruct
3
+ datasets: RedaAlami/OpenR1-Math-split-v1
4
+ library_name: transformers
5
+ tags:
6
+ - generated_from_trainer
7
+ - open-r1
8
+ licence: license
9
+ ---
10
+
11
+ # Model Card for None
12
+
13
+ This model is a fine-tuned version of [tiiuae/Falcon3-7B-Instruct](https://huggingface.co/tiiuae/Falcon3-7B-Instruct) on the [RedaAlami/OpenR1-Math-split-v1](https://huggingface.co/datasets/RedaAlami/OpenR1-Math-split-v1) dataset.
14
+ It has been trained using [TRL](https://github.com/huggingface/trl).
15
+
16
+ ## Quick start
17
+
18
+ ```python
19
+ from transformers import pipeline
20
+
21
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
22
+ generator = pipeline("text-generation", model="None", device="cuda")
23
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
24
+ print(output["generated_text"])
25
+ ```
26
+
27
+ ## Training procedure
28
+
29
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/tii-ai-frontier/huggingface/runs/d7z1a478)
30
+
31
+
32
+ This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
33
+
34
+ ### Framework versions
35
+
36
+ - TRL: 0.16.0.dev0
37
+ - Transformers: 4.50.0.dev0
38
+ - Pytorch: 2.6.0
39
+ - Datasets: 3.3.2
40
+ - Tokenizers: 0.21.0
41
+
42
+ ## Citations
43
+
44
+ Cite GRPO as:
45
+
46
+ ```bibtex
47
+ @article{zhihong2024deepseekmath,
48
+ title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
49
+ author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
50
+ year = 2024,
51
+ eprint = {arXiv:2402.03300},
52
+ }
53
+
54
+ ```
55
+
56
+ Cite TRL as:
57
+
58
+ ```bibtex
59
+ @misc{vonwerra2022trl,
60
+ title = {{TRL: Transformer Reinforcement Learning}},
61
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
62
+ year = 2020,
63
+ journal = {GitHub repository},
64
+ publisher = {GitHub},
65
+ howpublished = {\url{https://github.com/huggingface/trl}}
66
+ }
67
+ ```
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 0.0704507840104852,
4
+ "train_runtime": 435678.5475,
5
+ "train_samples": 89046,
6
+ "train_samples_per_second": 0.204,
7
+ "train_steps_per_second": 0.001
8
+ }
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "tiiuae/Falcon3-7B-Instruct",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 11,
9
+ "eos_token_id": 11,
10
+ "head_dim": 256,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 3072,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 23040,
15
+ "max_position_embeddings": 32768,
16
+ "mlp_bias": false,
17
+ "model_type": "llama",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 28,
20
+ "num_key_value_heads": 4,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-06,
23
+ "rope_scaling": null,
24
+ "rope_theta": 1000042,
25
+ "tie_word_embeddings": false,
26
+ "torch_dtype": "bfloat16",
27
+ "transformers_version": "4.50.0.dev0",
28
+ "use_cache": true,
29
+ "vocab_size": 131072
30
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 11,
4
+ "eos_token_id": 11,
5
+ "transformers_version": "4.50.0.dev0"
6
+ }
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:471c81f1f2c2d04e45ae2f89d5f3c3ff49322f4ec16f8d412e821cbc605d18e5
3
+ size 4938900432
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3340d2b182231d1b293964d2795e5167e1005e6a86ac7f3934b6ed49722ad420
3
+ size 4942085160
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6201ffbdb87e81b9b900c3fecdb7508c9a5e8c853a104c9b04ca686513495362
3
+ size 4224838512
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62115cd2a1576e8b0057f775de367640b00884d66ae74b8cd4ffbcd6ab7441a6
3
+ size 805306496
model.safetensors.index.json ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 14911100928
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
197
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
198
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
199
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
200
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
201
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
202
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
203
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
204
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
205
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
206
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
207
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
208
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
209
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
210
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
211
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
212
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
213
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
214
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
215
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
216
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
217
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
218
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
219
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
220
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
221
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
222
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
223
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
224
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
225
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
226
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
227
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
228
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
229
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
230
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
231
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
232
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
233
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
234
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
235
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
236
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
237
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
238
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
239
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
240
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
241
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
242
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
243
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
244
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
245
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
246
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
247
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
248
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
249
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
250
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
251
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
252
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
253
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
254
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
255
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
256
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
257
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
258
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
259
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
260
+ "model.norm.weight": "model-00003-of-00004.safetensors"
261
+ }
262
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ ">>TITLE<<",
4
+ ">>ABSTRACT<<",
5
+ ">>INTRODUCTION<<",
6
+ ">>SUMMARY<<",
7
+ ">>COMMENT<<",
8
+ ">>ANSWER<<",
9
+ ">>QUESTION<<",
10
+ ">>DOMAIN<<",
11
+ ">>EMAIL_ADDRESS<<",
12
+ ">>IP_ADDRESS<<",
13
+ "<|startoftext|>",
14
+ ">>IP_ADDRESS_0<<",
15
+ ">>IP_ADDRESS_1<<",
16
+ ">>IP_ADDRESS_2<<",
17
+ ">>IP_ADDRESS_3<<",
18
+ ">>IP_ADDRESS_4<<",
19
+ ">>IP_ADDRESS_5<<",
20
+ ">>IP_ADDRESS_6<<",
21
+ ">>IP_ADDRESS_7<<",
22
+ ">>IP_ADDRESS_8<<",
23
+ ">>IP_ADDRESS_9<<",
24
+ ">>PASSWORD<<",
25
+ ">>KEY<<"
26
+ ],
27
+ "eos_token": {
28
+ "content": "<|endoftext|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ },
34
+ "pad_token": {
35
+ "content": "<|pad|>",
36
+ "lstrip": false,
37
+ "normalized": false,
38
+ "rstrip": false,
39
+ "single_word": false
40
+ }
41
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 0.0704507840104852,
4
+ "train_runtime": 435678.5475,
5
+ "train_samples": 89046,
6
+ "train_samples_per_second": 0.204,
7
+ "train_steps_per_second": 0.001
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,1039 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9974847287100251,
5
+ "eval_steps": 100,
6
+ "global_step": 347,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "clip_ratio": 0.0,
13
+ "completion_length": 763.18623046875,
14
+ "epoch": 0.01437297879985627,
15
+ "grad_norm": 0.0765276625752449,
16
+ "kl": -6.394833326339721e-06,
17
+ "learning_rate": 2.8571428571428573e-06,
18
+ "loss": 0.0157,
19
+ "reward": 0.17431640625,
20
+ "reward_std": 0.23442449774593116,
21
+ "rewards/accuracy_reward": 0.08994140625,
22
+ "rewards/format_reward": 0.084375,
23
+ "step": 5
24
+ },
25
+ {
26
+ "clip_ratio": 0.0,
27
+ "completion_length": 698.62314453125,
28
+ "epoch": 0.02874595759971254,
29
+ "grad_norm": 0.11506624519824982,
30
+ "kl": 0.00981593132019043,
31
+ "learning_rate": 5.7142857142857145e-06,
32
+ "loss": 0.0584,
33
+ "reward": 0.6732421875,
34
+ "reward_std": 0.3674958860501647,
35
+ "rewards/accuracy_reward": 0.07646484375,
36
+ "rewards/format_reward": 0.59677734375,
37
+ "step": 10
38
+ },
39
+ {
40
+ "clip_ratio": 0.0,
41
+ "completion_length": 541.0048828125,
42
+ "epoch": 0.04311893639956881,
43
+ "grad_norm": 0.050542764365673065,
44
+ "kl": 0.02561187744140625,
45
+ "learning_rate": 8.571428571428571e-06,
46
+ "loss": 0.0354,
47
+ "reward": 1.036328125,
48
+ "reward_std": 0.2127559134736657,
49
+ "rewards/accuracy_reward": 0.102734375,
50
+ "rewards/format_reward": 0.93359375,
51
+ "step": 15
52
+ },
53
+ {
54
+ "clip_ratio": 0.0,
55
+ "completion_length": 632.689453125,
56
+ "epoch": 0.05749191519942508,
57
+ "grad_norm": 0.03859843313694,
58
+ "kl": 0.0311004638671875,
59
+ "learning_rate": 1.1428571428571429e-05,
60
+ "loss": 0.0249,
61
+ "reward": 1.1552734375,
62
+ "reward_std": 0.23164508808404208,
63
+ "rewards/accuracy_reward": 0.20224609375,
64
+ "rewards/format_reward": 0.95302734375,
65
+ "step": 20
66
+ },
67
+ {
68
+ "clip_ratio": 0.0,
69
+ "completion_length": 628.31357421875,
70
+ "epoch": 0.07186489399928135,
71
+ "grad_norm": 0.046529632061719894,
72
+ "kl": 0.0368988037109375,
73
+ "learning_rate": 1.4285714285714287e-05,
74
+ "loss": 0.0151,
75
+ "reward": 1.157421875,
76
+ "reward_std": 0.20364541225135327,
77
+ "rewards/accuracy_reward": 0.188671875,
78
+ "rewards/format_reward": 0.96875,
79
+ "step": 25
80
+ },
81
+ {
82
+ "clip_ratio": 0.0,
83
+ "completion_length": 671.5869140625,
84
+ "epoch": 0.08623787279913762,
85
+ "grad_norm": 0.037584338337183,
86
+ "kl": 0.03684234619140625,
87
+ "learning_rate": 1.7142857142857142e-05,
88
+ "loss": 0.0213,
89
+ "reward": 1.165234375,
90
+ "reward_std": 0.24268896747380495,
91
+ "rewards/accuracy_reward": 0.2177734375,
92
+ "rewards/format_reward": 0.9474609375,
93
+ "step": 30
94
+ },
95
+ {
96
+ "clip_ratio": 0.0,
97
+ "completion_length": 646.013671875,
98
+ "epoch": 0.1006108515989939,
99
+ "grad_norm": 0.34336549043655396,
100
+ "kl": 0.151519775390625,
101
+ "learning_rate": 2e-05,
102
+ "loss": 0.0359,
103
+ "reward": 1.14091796875,
104
+ "reward_std": 0.2653762998059392,
105
+ "rewards/accuracy_reward": 0.2052734375,
106
+ "rewards/format_reward": 0.93564453125,
107
+ "step": 35
108
+ },
109
+ {
110
+ "clip_ratio": 0.0,
111
+ "completion_length": 624.95908203125,
112
+ "epoch": 0.11498383039885016,
113
+ "grad_norm": 0.052160657942295074,
114
+ "kl": 0.595263671875,
115
+ "learning_rate": 1.9987329060020616e-05,
116
+ "loss": 0.0668,
117
+ "reward": 1.081640625,
118
+ "reward_std": 0.3258050443604589,
119
+ "rewards/accuracy_reward": 0.20439453125,
120
+ "rewards/format_reward": 0.87724609375,
121
+ "step": 40
122
+ },
123
+ {
124
+ "clip_ratio": 0.0,
125
+ "completion_length": 691.025390625,
126
+ "epoch": 0.12935680919870643,
127
+ "grad_norm": 0.27032357454299927,
128
+ "kl": 0.1677734375,
129
+ "learning_rate": 1.9949348350626456e-05,
130
+ "loss": 0.034,
131
+ "reward": 0.9642578125,
132
+ "reward_std": 0.4391048148274422,
133
+ "rewards/accuracy_reward": 0.18740234375,
134
+ "rewards/format_reward": 0.77685546875,
135
+ "step": 45
136
+ },
137
+ {
138
+ "clip_ratio": 0.0,
139
+ "completion_length": 440.34853515625,
140
+ "epoch": 0.1437297879985627,
141
+ "grad_norm": 0.6052369475364685,
142
+ "kl": 0.800189208984375,
143
+ "learning_rate": 1.9886154122075344e-05,
144
+ "loss": 0.0919,
145
+ "reward": 0.89814453125,
146
+ "reward_std": 0.38281605690717696,
147
+ "rewards/accuracy_reward": 0.11865234375,
148
+ "rewards/format_reward": 0.7794921875,
149
+ "step": 50
150
+ },
151
+ {
152
+ "clip_ratio": 0.0,
153
+ "completion_length": 487.60771484375,
154
+ "epoch": 0.15810276679841898,
155
+ "grad_norm": 0.28784340620040894,
156
+ "kl": 2.12225341796875,
157
+ "learning_rate": 1.979790652042268e-05,
158
+ "loss": 0.1039,
159
+ "reward": 0.85263671875,
160
+ "reward_std": 0.4635654494166374,
161
+ "rewards/accuracy_reward": 0.13447265625,
162
+ "rewards/format_reward": 0.7181640625,
163
+ "step": 55
164
+ },
165
+ {
166
+ "clip_ratio": 0.0,
167
+ "completion_length": 718.88359375,
168
+ "epoch": 0.17247574559827525,
169
+ "grad_norm": 0.38119208812713623,
170
+ "kl": 0.38172607421875,
171
+ "learning_rate": 1.9684829181681236e-05,
172
+ "loss": 0.0502,
173
+ "reward": 1.06494140625,
174
+ "reward_std": 0.3414448471739888,
175
+ "rewards/accuracy_reward": 0.21650390625,
176
+ "rewards/format_reward": 0.8484375,
177
+ "step": 60
178
+ },
179
+ {
180
+ "clip_ratio": 0.0,
181
+ "completion_length": 621.63818359375,
182
+ "epoch": 0.18684872439813152,
183
+ "grad_norm": 0.3849119246006012,
184
+ "kl": 1.819970703125,
185
+ "learning_rate": 1.954720866508546e-05,
186
+ "loss": 0.1892,
187
+ "reward": 0.9689453125,
188
+ "reward_std": 0.4041255243122578,
189
+ "rewards/accuracy_reward": 0.16826171875,
190
+ "rewards/format_reward": 0.80068359375,
191
+ "step": 65
192
+ },
193
+ {
194
+ "clip_ratio": 0.0,
195
+ "completion_length": 502.92744140625,
196
+ "epoch": 0.2012217031979878,
197
+ "grad_norm": 0.16367273032665253,
198
+ "kl": 0.688922119140625,
199
+ "learning_rate": 1.9385393726896492e-05,
200
+ "loss": 0.0581,
201
+ "reward": 1.1560546875,
202
+ "reward_std": 0.22550129257142543,
203
+ "rewards/accuracy_reward": 0.19248046875,
204
+ "rewards/format_reward": 0.96357421875,
205
+ "step": 70
206
+ },
207
+ {
208
+ "clip_ratio": 0.0,
209
+ "completion_length": 563.1029296875,
210
+ "epoch": 0.21559468199784404,
211
+ "grad_norm": 0.1713869571685791,
212
+ "kl": 0.0900238037109375,
213
+ "learning_rate": 1.9199794436588244e-05,
214
+ "loss": 0.0071,
215
+ "reward": 1.1892578125,
216
+ "reward_std": 0.2032089052721858,
217
+ "rewards/accuracy_reward": 0.21513671875,
218
+ "rewards/format_reward": 0.97412109375,
219
+ "step": 75
220
+ },
221
+ {
222
+ "clip_ratio": 0.0,
223
+ "completion_length": 622.5634765625,
224
+ "epoch": 0.2299676607977003,
225
+ "grad_norm": 0.2464917004108429,
226
+ "kl": 0.144158935546875,
227
+ "learning_rate": 1.899088113765426e-05,
228
+ "loss": 0.0189,
229
+ "reward": 1.1546875,
230
+ "reward_std": 0.2610320156440139,
231
+ "rewards/accuracy_reward": 0.21083984375,
232
+ "rewards/format_reward": 0.94384765625,
233
+ "step": 80
234
+ },
235
+ {
236
+ "clip_ratio": 0.0,
237
+ "completion_length": 652.05927734375,
238
+ "epoch": 0.24434063959755659,
239
+ "grad_norm": 0.2248377948999405,
240
+ "kl": 0.716436767578125,
241
+ "learning_rate": 1.875918325566888e-05,
242
+ "loss": 0.0578,
243
+ "reward": 1.06005859375,
244
+ "reward_std": 0.33321408815681935,
245
+ "rewards/accuracy_reward": 0.171484375,
246
+ "rewards/format_reward": 0.88857421875,
247
+ "step": 85
248
+ },
249
+ {
250
+ "clip_ratio": 0.0,
251
+ "completion_length": 669.3861328125,
252
+ "epoch": 0.25871361839741286,
253
+ "grad_norm": 0.27829509973526,
254
+ "kl": 0.617529296875,
255
+ "learning_rate": 1.8505287956623298e-05,
256
+ "loss": 0.0585,
257
+ "reward": 1.14755859375,
258
+ "reward_std": 0.2751380069181323,
259
+ "rewards/accuracy_reward": 0.20859375,
260
+ "rewards/format_reward": 0.93896484375,
261
+ "step": 90
262
+ },
263
+ {
264
+ "clip_ratio": 0.0,
265
+ "completion_length": 662.1236328125,
266
+ "epoch": 0.27308659719726913,
267
+ "grad_norm": 0.2939702868461609,
268
+ "kl": 0.5397705078125,
269
+ "learning_rate": 1.8229838658936566e-05,
270
+ "loss": 0.0555,
271
+ "reward": 1.137890625,
272
+ "reward_std": 0.2469838338904083,
273
+ "rewards/accuracy_reward": 0.1900390625,
274
+ "rewards/format_reward": 0.9478515625,
275
+ "step": 95
276
+ },
277
+ {
278
+ "epoch": 0.2874595759971254,
279
+ "grad_norm": 0.1728806495666504,
280
+ "learning_rate": 1.7933533402912354e-05,
281
+ "loss": 0.103,
282
+ "step": 100
283
+ },
284
+ {
285
+ "epoch": 0.2874595759971254,
286
+ "eval_clip_ratio": 0.0,
287
+ "eval_completion_length": 611.2384828951579,
288
+ "eval_kl": 0.50033329778157,
289
+ "eval_loss": 0.06100574508309364,
290
+ "eval_reward": 1.1420381825938566,
291
+ "eval_reward_std": 0.27033696519433437,
292
+ "eval_rewards/accuracy_reward": 0.2020051194539249,
293
+ "eval_rewards/format_reward": 0.9400330631399317,
294
+ "eval_runtime": 16336.0108,
295
+ "eval_samples_per_second": 0.287,
296
+ "eval_steps_per_second": 0.002,
297
+ "step": 100
298
+ },
299
+ {
300
+ "clip_ratio": 0.0,
301
+ "completion_length": 629.018017578125,
302
+ "epoch": 0.3018325547969817,
303
+ "grad_norm": 0.1207083985209465,
304
+ "kl": 1.06016845703125,
305
+ "learning_rate": 1.761712308177359e-05,
306
+ "loss": 0.1074,
307
+ "reward": 1.059326171875,
308
+ "reward_std": 0.35213989242911337,
309
+ "rewards/accuracy_reward": 0.18974609375,
310
+ "rewards/format_reward": 0.869580078125,
311
+ "step": 105
312
+ },
313
+ {
314
+ "clip_ratio": 0.0,
315
+ "completion_length": 622.68330078125,
316
+ "epoch": 0.31620553359683795,
317
+ "grad_norm": 0.12369602918624878,
318
+ "kl": 2.13466796875,
319
+ "learning_rate": 1.7281409538757886e-05,
320
+ "loss": 0.1546,
321
+ "reward": 1.06484375,
322
+ "reward_std": 0.3502559883520007,
323
+ "rewards/accuracy_reward": 0.1806640625,
324
+ "rewards/format_reward": 0.8841796875,
325
+ "step": 110
326
+ },
327
+ {
328
+ "clip_ratio": 0.0,
329
+ "completion_length": 619.0666015625,
330
+ "epoch": 0.3305785123966942,
331
+ "grad_norm": 0.13101035356521606,
332
+ "kl": 0.932763671875,
333
+ "learning_rate": 1.6927243535095995e-05,
334
+ "loss": 0.0856,
335
+ "reward": 1.14521484375,
336
+ "reward_std": 0.2656426582485437,
337
+ "rewards/accuracy_reward": 0.20322265625,
338
+ "rewards/format_reward": 0.9419921875,
339
+ "step": 115
340
+ },
341
+ {
342
+ "clip_ratio": 0.0,
343
+ "completion_length": 633.12802734375,
344
+ "epoch": 0.3449514911965505,
345
+ "grad_norm": 0.13193248212337494,
346
+ "kl": 0.9656982421875,
347
+ "learning_rate": 1.655552259402295e-05,
348
+ "loss": 0.0881,
349
+ "reward": 1.14560546875,
350
+ "reward_std": 0.27462361557409165,
351
+ "rewards/accuracy_reward": 0.21337890625,
352
+ "rewards/format_reward": 0.9322265625,
353
+ "step": 120
354
+ },
355
+ {
356
+ "clip_ratio": 0.0,
357
+ "completion_length": 653.04599609375,
358
+ "epoch": 0.35932446999640677,
359
+ "grad_norm": 0.3534374535083771,
360
+ "kl": 1.867626953125,
361
+ "learning_rate": 1.6167188726285433e-05,
362
+ "loss": 0.1558,
363
+ "reward": 1.05126953125,
364
+ "reward_std": 0.36074890177696944,
365
+ "rewards/accuracy_reward": 0.18544921875,
366
+ "rewards/format_reward": 0.8658203125,
367
+ "step": 125
368
+ },
369
+ {
370
+ "clip_ratio": 0.0,
371
+ "completion_length": 630.14736328125,
372
+ "epoch": 0.37369744879626304,
373
+ "grad_norm": 2.0081052780151367,
374
+ "kl": 1.8935546875,
375
+ "learning_rate": 1.5763226042909455e-05,
376
+ "loss": 0.1105,
377
+ "reward": 1.0998046875,
378
+ "reward_std": 0.3096121703274548,
379
+ "rewards/accuracy_reward": 0.18486328125,
380
+ "rewards/format_reward": 0.91494140625,
381
+ "step": 130
382
+ },
383
+ {
384
+ "clip_ratio": 0.0,
385
+ "completion_length": 614.62197265625,
386
+ "epoch": 0.3880704275961193,
387
+ "grad_norm": 0.1118120476603508,
388
+ "kl": 0.59337158203125,
389
+ "learning_rate": 1.5344658261278013e-05,
390
+ "loss": 0.031,
391
+ "reward": 1.16611328125,
392
+ "reward_std": 0.24496497269719839,
393
+ "rewards/accuracy_reward": 0.21005859375,
394
+ "rewards/format_reward": 0.9560546875,
395
+ "step": 135
396
+ },
397
+ {
398
+ "clip_ratio": 0.0,
399
+ "completion_length": 610.4009765625,
400
+ "epoch": 0.4024434063959756,
401
+ "grad_norm": 0.18786092102527618,
402
+ "kl": 0.7201416015625,
403
+ "learning_rate": 1.4912546110838775e-05,
404
+ "loss": 0.0608,
405
+ "reward": 1.1451171875,
406
+ "reward_std": 0.2563774929381907,
407
+ "rewards/accuracy_reward": 0.2021484375,
408
+ "rewards/format_reward": 0.94296875,
409
+ "step": 140
410
+ },
411
+ {
412
+ "clip_ratio": 0.0,
413
+ "completion_length": 604.14072265625,
414
+ "epoch": 0.41681638519583186,
415
+ "grad_norm": 0.12442336976528168,
416
+ "kl": 0.96689453125,
417
+ "learning_rate": 1.4467984645016259e-05,
418
+ "loss": 0.0834,
419
+ "reward": 1.13984375,
420
+ "reward_std": 0.2728093104436994,
421
+ "rewards/accuracy_reward": 0.2001953125,
422
+ "rewards/format_reward": 0.9396484375,
423
+ "step": 145
424
+ },
425
+ {
426
+ "clip_ratio": 0.0,
427
+ "completion_length": 612.0369140625,
428
+ "epoch": 0.4311893639956881,
429
+ "grad_norm": 0.17537765204906464,
430
+ "kl": 0.687255859375,
431
+ "learning_rate": 1.4012100466140579e-05,
432
+ "loss": 0.0628,
433
+ "reward": 1.12919921875,
434
+ "reward_std": 0.24853361072018743,
435
+ "rewards/accuracy_reward": 0.17646484375,
436
+ "rewards/format_reward": 0.952734375,
437
+ "step": 150
438
+ },
439
+ {
440
+ "clip_ratio": 0.0,
441
+ "completion_length": 609.915234375,
442
+ "epoch": 0.44556234279554435,
443
+ "grad_norm": 0.11783521622419357,
444
+ "kl": 0.83641357421875,
445
+ "learning_rate": 1.3546048870425356e-05,
446
+ "loss": 0.0734,
447
+ "reward": 1.12666015625,
448
+ "reward_std": 0.264958731085062,
449
+ "rewards/accuracy_reward": 0.18427734375,
450
+ "rewards/format_reward": 0.9423828125,
451
+ "step": 155
452
+ },
453
+ {
454
+ "clip_ratio": 0.0,
455
+ "completion_length": 614.70517578125,
456
+ "epoch": 0.4599353215954006,
457
+ "grad_norm": 0.13742466270923615,
458
+ "kl": 0.7468505859375,
459
+ "learning_rate": 1.3071010920229909e-05,
460
+ "loss": 0.0682,
461
+ "reward": 1.122265625,
462
+ "reward_std": 0.2766525615006685,
463
+ "rewards/accuracy_reward": 0.18798828125,
464
+ "rewards/format_reward": 0.93427734375,
465
+ "step": 160
466
+ },
467
+ {
468
+ "clip_ratio": 0.0,
469
+ "completion_length": 625.36552734375,
470
+ "epoch": 0.4743083003952569,
471
+ "grad_norm": 0.4238876700401306,
472
+ "kl": 1.381640625,
473
+ "learning_rate": 1.2588190451025209e-05,
474
+ "loss": 0.1039,
475
+ "reward": 1.13544921875,
476
+ "reward_std": 0.31343956142663953,
477
+ "rewards/accuracy_reward": 0.2201171875,
478
+ "rewards/format_reward": 0.91533203125,
479
+ "step": 165
480
+ },
481
+ {
482
+ "clip_ratio": 0.0,
483
+ "completion_length": 672.3779296875,
484
+ "epoch": 0.48868127919511317,
485
+ "grad_norm": 0.13015827536582947,
486
+ "kl": 1.4199462890625,
487
+ "learning_rate": 1.2098811020648475e-05,
488
+ "loss": 0.0989,
489
+ "reward": 1.11416015625,
490
+ "reward_std": 0.3195471292361617,
491
+ "rewards/accuracy_reward": 0.208203125,
492
+ "rewards/format_reward": 0.90595703125,
493
+ "step": 170
494
+ },
495
+ {
496
+ "clip_ratio": 0.0,
497
+ "completion_length": 631.84326171875,
498
+ "epoch": 0.5030542579949695,
499
+ "grad_norm": 0.2257327437400818,
500
+ "kl": 1.1652099609375,
501
+ "learning_rate": 1.1604112808577603e-05,
502
+ "loss": 0.101,
503
+ "reward": 1.1236328125,
504
+ "reward_std": 0.30357036273926497,
505
+ "rewards/accuracy_reward": 0.211328125,
506
+ "rewards/format_reward": 0.9123046875,
507
+ "step": 175
508
+ },
509
+ {
510
+ "clip_ratio": 0.0,
511
+ "completion_length": 622.3265625,
512
+ "epoch": 0.5174272367948257,
513
+ "grad_norm": 0.11806362867355347,
514
+ "kl": 0.7406005859375,
515
+ "learning_rate": 1.11053494730832e-05,
516
+ "loss": 0.0699,
517
+ "reward": 1.1373046875,
518
+ "reward_std": 0.25564199751242994,
519
+ "rewards/accuracy_reward": 0.19658203125,
520
+ "rewards/format_reward": 0.94072265625,
521
+ "step": 180
522
+ },
523
+ {
524
+ "clip_ratio": 0.0,
525
+ "completion_length": 652.4876953125,
526
+ "epoch": 0.531800215594682,
527
+ "grad_norm": 0.12807710468769073,
528
+ "kl": 0.58621826171875,
529
+ "learning_rate": 1.0603784974222862e-05,
530
+ "loss": 0.0587,
531
+ "reward": 1.173046875,
532
+ "reward_std": 0.26026681158691645,
533
+ "rewards/accuracy_reward": 0.2248046875,
534
+ "rewards/format_reward": 0.9482421875,
535
+ "step": 185
536
+ },
537
+ {
538
+ "clip_ratio": 0.0,
539
+ "completion_length": 630.433203125,
540
+ "epoch": 0.5461731943945383,
541
+ "grad_norm": 0.10217402130365372,
542
+ "kl": 0.9344970703125,
543
+ "learning_rate": 1.0100690370728756e-05,
544
+ "loss": 0.0809,
545
+ "reward": 1.1609375,
546
+ "reward_std": 0.2667428271844983,
547
+ "rewards/accuracy_reward": 0.2150390625,
548
+ "rewards/format_reward": 0.9458984375,
549
+ "step": 190
550
+ },
551
+ {
552
+ "clip_ratio": 0.0,
553
+ "completion_length": 617.68701171875,
554
+ "epoch": 0.5605461731943946,
555
+ "grad_norm": 0.13498954474925995,
556
+ "kl": 0.67510986328125,
557
+ "learning_rate": 9.597340598905851e-06,
558
+ "loss": 0.0603,
559
+ "reward": 1.1654296875,
560
+ "reward_std": 0.25683426298201084,
561
+ "rewards/accuracy_reward": 0.21796875,
562
+ "rewards/format_reward": 0.9474609375,
563
+ "step": 195
564
+ },
565
+ {
566
+ "epoch": 0.5749191519942508,
567
+ "grad_norm": 0.1882268339395523,
568
+ "learning_rate": 9.095011241703623e-06,
569
+ "loss": 0.0719,
570
+ "step": 200
571
+ },
572
+ {
573
+ "epoch": 0.5749191519942508,
574
+ "eval_clip_ratio": 0.0,
575
+ "eval_completion_length": 658.4643835907503,
576
+ "eval_kl": 0.7806433980375427,
577
+ "eval_loss": 0.06092459335923195,
578
+ "eval_reward": 1.149637372013652,
579
+ "eval_reward_std": 0.27955490747409467,
580
+ "eval_rewards/accuracy_reward": 0.2150170648464164,
581
+ "eval_rewards/format_reward": 0.9346203071672355,
582
+ "eval_runtime": 16414.3395,
583
+ "eval_samples_per_second": 0.286,
584
+ "eval_steps_per_second": 0.002,
585
+ "step": 200
586
+ },
587
+ {
588
+ "clip_ratio": 0.0,
589
+ "completion_length": 652.56220703125,
590
+ "epoch": 0.589292130794107,
591
+ "grad_norm": 0.1547040194272995,
592
+ "kl": 0.93699951171875,
593
+ "learning_rate": 8.594975296149076e-06,
594
+ "loss": 0.0647,
595
+ "reward": 1.1623046875,
596
+ "reward_std": 0.28741056518629193,
597
+ "rewards/accuracy_reward": 0.23125,
598
+ "rewards/format_reward": 0.9310546875,
599
+ "step": 205
600
+ },
601
+ {
602
+ "clip_ratio": 0.0,
603
+ "completion_length": 674.5626953125,
604
+ "epoch": 0.6036651095939634,
605
+ "grad_norm": 0.25151509046554565,
606
+ "kl": 0.9999267578125,
607
+ "learning_rate": 8.098499947332935e-06,
608
+ "loss": 0.0775,
609
+ "reward": 1.1466796875,
610
+ "reward_std": 0.30369703844189644,
611
+ "rewards/accuracy_reward": 0.22509765625,
612
+ "rewards/format_reward": 0.92158203125,
613
+ "step": 210
614
+ },
615
+ {
616
+ "clip_ratio": 0.0,
617
+ "completion_length": 676.977734375,
618
+ "epoch": 0.6180380883938196,
619
+ "grad_norm": 0.20043928921222687,
620
+ "kl": 0.7748779296875,
621
+ "learning_rate": 7.606843357124426e-06,
622
+ "loss": 0.0573,
623
+ "reward": 1.15302734375,
624
+ "reward_std": 0.28829708844423296,
625
+ "rewards/accuracy_reward": 0.2244140625,
626
+ "rewards/format_reward": 0.92861328125,
627
+ "step": 215
628
+ },
629
+ {
630
+ "clip_ratio": 0.0,
631
+ "completion_length": 655.955078125,
632
+ "epoch": 0.6324110671936759,
633
+ "grad_norm": 0.12682239711284637,
634
+ "kl": 0.7095947265625,
635
+ "learning_rate": 7.12125147575254e-06,
636
+ "loss": 0.0548,
637
+ "reward": 1.1763671875,
638
+ "reward_std": 0.25821941047906877,
639
+ "rewards/accuracy_reward": 0.23046875,
640
+ "rewards/format_reward": 0.9458984375,
641
+ "step": 220
642
+ },
643
+ {
644
+ "clip_ratio": 0.0,
645
+ "completion_length": 647.839453125,
646
+ "epoch": 0.6467840459935321,
647
+ "grad_norm": 0.13890360295772552,
648
+ "kl": 0.63245849609375,
649
+ "learning_rate": 6.6429548843339554e-06,
650
+ "loss": 0.0502,
651
+ "reward": 1.1654296875,
652
+ "reward_std": 0.2512395134195685,
653
+ "rewards/accuracy_reward": 0.21337890625,
654
+ "rewards/format_reward": 0.95205078125,
655
+ "step": 225
656
+ },
657
+ {
658
+ "clip_ratio": 0.0,
659
+ "completion_length": 632.53623046875,
660
+ "epoch": 0.6611570247933884,
661
+ "grad_norm": 0.15598197281360626,
662
+ "kl": 0.87559814453125,
663
+ "learning_rate": 6.173165676349103e-06,
664
+ "loss": 0.0703,
665
+ "reward": 1.155078125,
666
+ "reward_std": 0.2729664742946625,
667
+ "rewards/accuracy_reward": 0.213671875,
668
+ "rewards/format_reward": 0.94140625,
669
+ "step": 230
670
+ },
671
+ {
672
+ "clip_ratio": 0.0,
673
+ "completion_length": 641.5361328125,
674
+ "epoch": 0.6755300035932447,
675
+ "grad_norm": 0.15446113049983978,
676
+ "kl": 0.77437744140625,
677
+ "learning_rate": 5.713074385969457e-06,
678
+ "loss": 0.0688,
679
+ "reward": 1.16953125,
680
+ "reward_std": 0.28331395238637924,
681
+ "rewards/accuracy_reward": 0.2296875,
682
+ "rewards/format_reward": 0.93984375,
683
+ "step": 235
684
+ },
685
+ {
686
+ "clip_ratio": 0.0,
687
+ "completion_length": 647.3654296875,
688
+ "epoch": 0.689902982393101,
689
+ "grad_norm": 0.2089157998561859,
690
+ "kl": 1.21328125,
691
+ "learning_rate": 5.263846971020108e-06,
692
+ "loss": 0.1016,
693
+ "reward": 1.116796875,
694
+ "reward_std": 0.31174491699784995,
695
+ "rewards/accuracy_reward": 0.2029296875,
696
+ "rewards/format_reward": 0.9138671875,
697
+ "step": 240
698
+ },
699
+ {
700
+ "clip_ratio": 0.0,
701
+ "completion_length": 645.523828125,
702
+ "epoch": 0.7042759611929572,
703
+ "grad_norm": 0.16784484684467316,
704
+ "kl": 0.791552734375,
705
+ "learning_rate": 4.826621858223431e-06,
706
+ "loss": 0.0734,
707
+ "reward": 1.143359375,
708
+ "reward_std": 0.28859285488724706,
709
+ "rewards/accuracy_reward": 0.2154296875,
710
+ "rewards/format_reward": 0.9279296875,
711
+ "step": 245
712
+ },
713
+ {
714
+ "clip_ratio": 0.0,
715
+ "completion_length": 619.52958984375,
716
+ "epoch": 0.7186489399928135,
717
+ "grad_norm": 0.1753949671983719,
718
+ "kl": 0.98125,
719
+ "learning_rate": 4.40250705821178e-06,
720
+ "loss": 0.0812,
721
+ "reward": 1.1546875,
722
+ "reward_std": 0.2736880548298359,
723
+ "rewards/accuracy_reward": 0.2154296875,
724
+ "rewards/format_reward": 0.9392578125,
725
+ "step": 250
726
+ },
727
+ {
728
+ "clip_ratio": 0.0,
729
+ "completion_length": 635.1673828125,
730
+ "epoch": 0.7330219187926698,
731
+ "grad_norm": 0.20336733758449554,
732
+ "kl": 0.55863037109375,
733
+ "learning_rate": 3.99257735762021e-06,
734
+ "loss": 0.0458,
735
+ "reward": 1.17392578125,
736
+ "reward_std": 0.23981231823563576,
737
+ "rewards/accuracy_reward": 0.21728515625,
738
+ "rewards/format_reward": 0.956640625,
739
+ "step": 255
740
+ },
741
+ {
742
+ "clip_ratio": 0.0,
743
+ "completion_length": 630.9087890625,
744
+ "epoch": 0.7473948975925261,
745
+ "grad_norm": 0.16080701351165771,
746
+ "kl": 0.696923828125,
747
+ "learning_rate": 3.5978715953751207e-06,
748
+ "loss": 0.0567,
749
+ "reward": 1.1685546875,
750
+ "reward_std": 0.24907034020870925,
751
+ "rewards/accuracy_reward": 0.21376953125,
752
+ "rewards/format_reward": 0.95478515625,
753
+ "step": 260
754
+ },
755
+ {
756
+ "clip_ratio": 0.0,
757
+ "completion_length": 623.18583984375,
758
+ "epoch": 0.7617678763923823,
759
+ "grad_norm": 0.18338614702224731,
760
+ "kl": 1.0648681640625,
761
+ "learning_rate": 3.2193900300810908e-06,
762
+ "loss": 0.0778,
763
+ "reward": 1.151953125,
764
+ "reward_std": 0.26931764371693134,
765
+ "rewards/accuracy_reward": 0.210546875,
766
+ "rewards/format_reward": 0.94140625,
767
+ "step": 265
768
+ },
769
+ {
770
+ "clip_ratio": 0.0,
771
+ "completion_length": 634.9572265625,
772
+ "epoch": 0.7761408551922386,
773
+ "grad_norm": 0.13022945821285248,
774
+ "kl": 0.7796142578125,
775
+ "learning_rate": 2.8580918051775542e-06,
776
+ "loss": 0.065,
777
+ "reward": 1.165625,
778
+ "reward_std": 0.27459610607475043,
779
+ "rewards/accuracy_reward": 0.2244140625,
780
+ "rewards/format_reward": 0.9412109375,
781
+ "step": 270
782
+ },
783
+ {
784
+ "clip_ratio": 0.0,
785
+ "completion_length": 633.88232421875,
786
+ "epoch": 0.7905138339920948,
787
+ "grad_norm": 0.1719103306531906,
788
+ "kl": 0.8088623046875,
789
+ "learning_rate": 2.514892518288988e-06,
790
+ "loss": 0.0696,
791
+ "reward": 1.15087890625,
792
+ "reward_std": 0.2822716049849987,
793
+ "rewards/accuracy_reward": 0.21640625,
794
+ "rewards/format_reward": 0.93447265625,
795
+ "step": 275
796
+ },
797
+ {
798
+ "clip_ratio": 0.0,
799
+ "completion_length": 636.853125,
800
+ "epoch": 0.8048868127919512,
801
+ "grad_norm": 0.21337589621543884,
802
+ "kl": 0.9040283203125,
803
+ "learning_rate": 2.190661900928426e-06,
804
+ "loss": 0.0753,
805
+ "reward": 1.1412109375,
806
+ "reward_std": 0.2784146698191762,
807
+ "rewards/accuracy_reward": 0.2029296875,
808
+ "rewards/format_reward": 0.93828125,
809
+ "step": 280
810
+ },
811
+ {
812
+ "clip_ratio": 0.0,
813
+ "completion_length": 639.5638671875,
814
+ "epoch": 0.8192597915918074,
815
+ "grad_norm": 0.1362425535917282,
816
+ "kl": 0.95645751953125,
817
+ "learning_rate": 1.8862216144342692e-06,
818
+ "loss": 0.0749,
819
+ "reward": 1.14130859375,
820
+ "reward_std": 0.2679125562310219,
821
+ "rewards/accuracy_reward": 0.20546875,
822
+ "rewards/format_reward": 0.93583984375,
823
+ "step": 285
824
+ },
825
+ {
826
+ "clip_ratio": 0.0,
827
+ "completion_length": 639.32958984375,
828
+ "epoch": 0.8336327703916637,
829
+ "grad_norm": 0.13494881987571716,
830
+ "kl": 0.8051513671875,
831
+ "learning_rate": 1.6023431677260215e-06,
832
+ "loss": 0.0684,
833
+ "reward": 1.16240234375,
834
+ "reward_std": 0.26225354727357625,
835
+ "rewards/accuracy_reward": 0.21396484375,
836
+ "rewards/format_reward": 0.9484375,
837
+ "step": 290
838
+ },
839
+ {
840
+ "clip_ratio": 0.0,
841
+ "completion_length": 636.16083984375,
842
+ "epoch": 0.8480057491915199,
843
+ "grad_norm": 0.16026277840137482,
844
+ "kl": 0.8697265625,
845
+ "learning_rate": 1.339745962155613e-06,
846
+ "loss": 0.0712,
847
+ "reward": 1.15966796875,
848
+ "reward_std": 0.2733839010819793,
849
+ "rewards/accuracy_reward": 0.21552734375,
850
+ "rewards/format_reward": 0.944140625,
851
+ "step": 295
852
+ },
853
+ {
854
+ "epoch": 0.8623787279913762,
855
+ "grad_norm": 0.155064195394516,
856
+ "learning_rate": 1.099095468409156e-06,
857
+ "loss": 0.0785,
858
+ "step": 300
859
+ },
860
+ {
861
+ "epoch": 0.8623787279913762,
862
+ "eval_clip_ratio": 0.0,
863
+ "eval_completion_length": 628.6954391531569,
864
+ "eval_kl": 0.8880319432593856,
865
+ "eval_loss": 0.07323075085878372,
866
+ "eval_reward": 1.1617160836177474,
867
+ "eval_reward_std": 0.2670084892838888,
868
+ "eval_rewards/accuracy_reward": 0.21819005972696245,
869
+ "eval_rewards/format_reward": 0.943526023890785,
870
+ "eval_runtime": 16336.911,
871
+ "eval_samples_per_second": 0.287,
872
+ "eval_steps_per_second": 0.002,
873
+ "step": 300
874
+ },
875
+ {
876
+ "clip_ratio": 0.0,
877
+ "completion_length": 636.594287109375,
878
+ "epoch": 0.8767517067912325,
879
+ "grad_norm": 0.1458193063735962,
880
+ "kl": 0.95950927734375,
881
+ "learning_rate": 8.810015400790994e-07,
882
+ "loss": 0.0809,
883
+ "reward": 1.16162109375,
884
+ "reward_std": 0.26864673662930727,
885
+ "rewards/accuracy_reward": 0.2203125,
886
+ "rewards/format_reward": 0.94130859375,
887
+ "step": 305
888
+ },
889
+ {
890
+ "clip_ratio": 0.0,
891
+ "completion_length": 642.09326171875,
892
+ "epoch": 0.8911246855910887,
893
+ "grad_norm": 0.14581456780433655,
894
+ "kl": 0.82933349609375,
895
+ "learning_rate": 6.860168681805946e-07,
896
+ "loss": 0.0661,
897
+ "reward": 1.16982421875,
898
+ "reward_std": 0.26240854635834693,
899
+ "rewards/accuracy_reward": 0.2216796875,
900
+ "rewards/format_reward": 0.94814453125,
901
+ "step": 310
902
+ },
903
+ {
904
+ "clip_ratio": 0.0,
905
+ "completion_length": 642.76943359375,
906
+ "epoch": 0.905497664390945,
907
+ "grad_norm": 0.16072359681129456,
908
+ "kl": 0.80216064453125,
909
+ "learning_rate": 5.146355805285452e-07,
910
+ "loss": 0.0637,
911
+ "reward": 1.17431640625,
912
+ "reward_std": 0.2672739554196596,
913
+ "rewards/accuracy_reward": 0.22734375,
914
+ "rewards/format_reward": 0.94697265625,
915
+ "step": 315
916
+ },
917
+ {
918
+ "clip_ratio": 0.0,
919
+ "completion_length": 644.221484375,
920
+ "epoch": 0.9198706431908013,
921
+ "grad_norm": 0.1719951331615448,
922
+ "kl": 0.84737548828125,
923
+ "learning_rate": 3.6729198952483725e-07,
924
+ "loss": 0.0748,
925
+ "reward": 1.158203125,
926
+ "reward_std": 0.2642348381690681,
927
+ "rewards/accuracy_reward": 0.2169921875,
928
+ "rewards/format_reward": 0.9412109375,
929
+ "step": 320
930
+ },
931
+ {
932
+ "clip_ratio": 0.0,
933
+ "completion_length": 649.33896484375,
934
+ "epoch": 0.9342436219906576,
935
+ "grad_norm": 0.20107921957969666,
936
+ "kl": 0.87275390625,
937
+ "learning_rate": 2.4435949152906144e-07,
938
+ "loss": 0.0757,
939
+ "reward": 1.15966796875,
940
+ "reward_std": 0.27580115627497437,
941
+ "rewards/accuracy_reward": 0.22021484375,
942
+ "rewards/format_reward": 0.939453125,
943
+ "step": 325
944
+ },
945
+ {
946
+ "clip_ratio": 0.0,
947
+ "completion_length": 643.75712890625,
948
+ "epoch": 0.9486166007905138,
949
+ "grad_norm": 0.14510348439216614,
950
+ "kl": 0.821826171875,
951
+ "learning_rate": 1.4614962060194303e-07,
952
+ "loss": 0.0658,
953
+ "reward": 1.140625,
954
+ "reward_std": 0.2549537133425474,
955
+ "rewards/accuracy_reward": 0.1978515625,
956
+ "rewards/format_reward": 0.9427734375,
957
+ "step": 330
958
+ },
959
+ {
960
+ "clip_ratio": 0.0,
961
+ "completion_length": 643.530078125,
962
+ "epoch": 0.9629895795903701,
963
+ "grad_norm": 0.14030759036540985,
964
+ "kl": 0.77998046875,
965
+ "learning_rate": 7.291125901946027e-08,
966
+ "loss": 0.0701,
967
+ "reward": 1.1693359375,
968
+ "reward_std": 0.2593334957957268,
969
+ "rewards/accuracy_reward": 0.22529296875,
970
+ "rewards/format_reward": 0.94404296875,
971
+ "step": 335
972
+ },
973
+ {
974
+ "clip_ratio": 0.0,
975
+ "completion_length": 646.19736328125,
976
+ "epoch": 0.9773625583902263,
977
+ "grad_norm": 0.16929689049720764,
978
+ "kl": 0.835546875,
979
+ "learning_rate": 2.4830006558373975e-08,
980
+ "loss": 0.0697,
981
+ "reward": 1.162109375,
982
+ "reward_std": 0.26842295806854966,
983
+ "rewards/accuracy_reward": 0.2173828125,
984
+ "rewards/format_reward": 0.9447265625,
985
+ "step": 340
986
+ },
987
+ {
988
+ "clip_ratio": 0.0,
989
+ "completion_length": 642.66806640625,
990
+ "epoch": 0.9917355371900827,
991
+ "grad_norm": 0.17319317162036896,
992
+ "kl": 0.85125732421875,
993
+ "learning_rate": 2.0277101514987184e-09,
994
+ "loss": 0.0724,
995
+ "reward": 1.15966796875,
996
+ "reward_std": 0.2777851399034262,
997
+ "rewards/accuracy_reward": 0.21982421875,
998
+ "rewards/format_reward": 0.93984375,
999
+ "step": 345
1000
+ },
1001
+ {
1002
+ "clip_ratio": 0.0,
1003
+ "completion_length": 643.1118812561035,
1004
+ "epoch": 0.9974847287100251,
1005
+ "kl": 0.8223876953125,
1006
+ "reward": 1.182861328125,
1007
+ "reward_std": 0.2758036791346967,
1008
+ "rewards/accuracy_reward": 0.25390625,
1009
+ "rewards/format_reward": 0.928955078125,
1010
+ "step": 347,
1011
+ "total_flos": 0.0,
1012
+ "train_loss": 0.0704507840104852,
1013
+ "train_runtime": 435678.5475,
1014
+ "train_samples_per_second": 0.204,
1015
+ "train_steps_per_second": 0.001
1016
+ }
1017
+ ],
1018
+ "logging_steps": 5,
1019
+ "max_steps": 347,
1020
+ "num_input_tokens_seen": 0,
1021
+ "num_train_epochs": 1,
1022
+ "save_steps": 500,
1023
+ "stateful_callbacks": {
1024
+ "TrainerControl": {
1025
+ "args": {
1026
+ "should_epoch_stop": false,
1027
+ "should_evaluate": false,
1028
+ "should_log": false,
1029
+ "should_save": false,
1030
+ "should_training_stop": false
1031
+ },
1032
+ "attributes": {}
1033
+ }
1034
+ },
1035
+ "total_flos": 0.0,
1036
+ "train_batch_size": 16,
1037
+ "trial_name": null,
1038
+ "trial_params": null
1039
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:282c6ac009742419721e5433e133b150f69d57792bb5314d501e84c3c67fe5a7
3
+ size 7736