Update README.md
Browse files
README.md
CHANGED
@@ -1,4 +1,213 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
tags:
|
3 |
+
- vllm
|
4 |
+
- vision
|
5 |
+
- fp8
|
6 |
+
license: apache-2.0
|
7 |
+
license_link: >-
|
8 |
+
https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
|
9 |
+
language:
|
10 |
+
- en
|
11 |
+
base_model: google/gemma-3-4b-it
|
12 |
+
library_name: transformers
|
13 |
+
---
|
14 |
+
|
15 |
+
# gemma-3-4b-it-FP8-Dynamic
|
16 |
+
|
17 |
+
## Model Overview
|
18 |
+
- **Model Architecture:** gemma-3-4b-it
|
19 |
+
- **Input:** Vision-Text
|
20 |
+
- **Output:** Text
|
21 |
+
- **Model Optimizations:**
|
22 |
+
- **Weight quantization:** FP8
|
23 |
+
- **Activation quantization:** FP8
|
24 |
+
- **Release Date:** 2/24/2025
|
25 |
+
- **Version:** 1.0
|
26 |
+
- **Model Developers:** Neural Magic
|
27 |
+
|
28 |
+
Quantized version of [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it).
|
29 |
+
|
30 |
+
### Model Optimizations
|
31 |
+
|
32 |
+
This model was obtained by quantizing the weights of [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it) to FP8 data type, ready for inference with vLLM >= 0.5.2.
|
33 |
+
|
34 |
+
## Deployment
|
35 |
+
|
36 |
+
### Use with vLLM
|
37 |
+
|
38 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
39 |
+
|
40 |
+
```python
|
41 |
+
from vllm import LLM, SamplingParams
|
42 |
+
from vllm.assets.image import ImageAsset
|
43 |
+
from transformers import AutoProcessor
|
44 |
+
|
45 |
+
# Define model name once
|
46 |
+
model_name = "RedHatAI/gemma-3-4b-it-FP8-dynamic"
|
47 |
+
|
48 |
+
# Load image and processor
|
49 |
+
image = ImageAsset("cherry_blossom").pil_image.convert("RGB")
|
50 |
+
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
|
51 |
+
|
52 |
+
# Build multimodal prompt
|
53 |
+
chat = [
|
54 |
+
{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "What is the content of this image?"}]},
|
55 |
+
{"role": "assistant", "content": []}
|
56 |
+
]
|
57 |
+
prompt = processor.apply_chat_template(chat, add_generation_prompt=True)
|
58 |
+
|
59 |
+
# Initialize model
|
60 |
+
llm = LLM(model=model_name, trust_remote_code=True)
|
61 |
+
|
62 |
+
# Run inference
|
63 |
+
inputs = {"prompt": prompt, "multi_modal_data": {"image": [image]}}
|
64 |
+
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))
|
65 |
+
|
66 |
+
# Display result
|
67 |
+
print("RESPONSE:", outputs[0].outputs[0].text)
|
68 |
+
|
69 |
+
```
|
70 |
+
|
71 |
+
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
72 |
+
|
73 |
+
## Creation
|
74 |
+
|
75 |
+
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below as part a multimodal announcement blog.
|
76 |
+
|
77 |
+
<details>
|
78 |
+
<summary>Model Creation Code</summary>
|
79 |
+
|
80 |
+
```python
|
81 |
+
import requests
|
82 |
+
import torch
|
83 |
+
from PIL import Image
|
84 |
+
from transformers import AutoProcessor, Gemma3ForConditionalGeneration
|
85 |
+
from llmcompressor.transformers import oneshot
|
86 |
+
from llmcompressor.modifiers.quantization import QuantizationModifier
|
87 |
+
|
88 |
+
# Load model.
|
89 |
+
model_id = google/gemma-3-4b-it
|
90 |
+
model = Gemma3ForConditionalGeneration.from_pretrained(
|
91 |
+
model_id, device_map="auto", torch_dtype="auto"
|
92 |
+
)
|
93 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
94 |
+
|
95 |
+
# Recipe
|
96 |
+
recipe = [
|
97 |
+
QuantizationModifier(
|
98 |
+
targets="Linear",
|
99 |
+
scheme="FP8_DYNAMIC",
|
100 |
+
sequential_targets=["Gemma3DecoderLayer"],
|
101 |
+
ignore=["re:.*lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"],
|
102 |
+
),
|
103 |
+
]
|
104 |
+
|
105 |
+
SAVE_DIR=f"{model_id.split('/')[1]}-FP8-Dynamic"
|
106 |
+
|
107 |
+
# Perform oneshot
|
108 |
+
oneshot(
|
109 |
+
model=model,
|
110 |
+
recipe=recipe,
|
111 |
+
trust_remote_code_model=True,
|
112 |
+
output_dir=SAVE_DIR
|
113 |
+
)
|
114 |
+
|
115 |
+
|
116 |
+
```
|
117 |
+
</details>
|
118 |
+
|
119 |
+
## Evaluation
|
120 |
+
|
121 |
+
The model was evaluated using [lm_evaluation_harness](https://github.com/neuralmagic/lm-evaluation-harness) for OpenLLM v1 text benchmark. The evaluations were conducted using the following commands:
|
122 |
+
|
123 |
+
<details>
|
124 |
+
<summary>Evaluation Commands</summary>
|
125 |
+
|
126 |
+
### OpenLLM v1
|
127 |
+
```
|
128 |
+
lm_eval \
|
129 |
+
--model vllm \
|
130 |
+
--model_args pretrained="<model_name>",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=<n>,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True,enforce_eager=True \
|
131 |
+
--tasks openllm \
|
132 |
+
--batch_size auto
|
133 |
+
```
|
134 |
+
</details>
|
135 |
+
|
136 |
+
### Accuracy
|
137 |
+
|
138 |
+
<table>
|
139 |
+
<thead>
|
140 |
+
<tr>
|
141 |
+
<th>Category</th>
|
142 |
+
<th>Metric</th>
|
143 |
+
<th>google/gemma-3-4b-it</th>
|
144 |
+
<th>RedHatAI/gemma-3-4b-it-FP8-Dynamic</th>
|
145 |
+
<th>Recovery (%)</th>
|
146 |
+
</tr>
|
147 |
+
</thead>
|
148 |
+
<tbody>
|
149 |
+
<tr>
|
150 |
+
<td rowspan="7"><b>OpenLLM V1</b></td>
|
151 |
+
<td>ARC Challenge</td>
|
152 |
+
<td>56.57%</td>
|
153 |
+
<td>57.08%</td>
|
154 |
+
<td>100.90%</td>
|
155 |
+
</tr>
|
156 |
+
<tr>
|
157 |
+
<td>GSM8K</td>
|
158 |
+
<td>76.12%</td>
|
159 |
+
<td>75.51%</td>
|
160 |
+
<td>99.20%</td>
|
161 |
+
</tr>
|
162 |
+
<tr>
|
163 |
+
<td>Hellaswag</td>
|
164 |
+
<td>74.96%</td>
|
165 |
+
<td>74.92%</td>
|
166 |
+
<td>99.95%</td>
|
167 |
+
</tr>
|
168 |
+
<tr>
|
169 |
+
<td>MMLU</td>
|
170 |
+
<td>58.38%</td>
|
171 |
+
<td>57.98%</td>
|
172 |
+
<td>99.32%</td>
|
173 |
+
</tr>
|
174 |
+
<tr>
|
175 |
+
<td>Truthfulqa (mc2)</td>
|
176 |
+
<td>51.87%</td>
|
177 |
+
<td>51.62%</td>
|
178 |
+
<td>99.52%</td>
|
179 |
+
</tr>
|
180 |
+
<tr>
|
181 |
+
<td>Winogrande</td>
|
182 |
+
<td>70.32%</td>
|
183 |
+
<td>71.03%</td>
|
184 |
+
<td>101.01%%%%</td>
|
185 |
+
</tr>
|
186 |
+
<tr>
|
187 |
+
<td><b>Average Score</b></td>
|
188 |
+
<td><b>64.70%</b></td>
|
189 |
+
<td><b>64.69%</b></td>
|
190 |
+
<td><b>99.98%</b></td>
|
191 |
+
</tr>
|
192 |
+
<tr>
|
193 |
+
<td rowspan="3"><b>Vision Evals</b></td>
|
194 |
+
<td>MMMU (val)</td>
|
195 |
+
<td>%</td>
|
196 |
+
<td>%</td>
|
197 |
+
<td>%</td>
|
198 |
+
</tr>
|
199 |
+
<tr>
|
200 |
+
<td>ChartQA</td>
|
201 |
+
<td>%</td>
|
202 |
+
<td>%</td>
|
203 |
+
<td>%</td>
|
204 |
+
</tr>
|
205 |
+
<tr>
|
206 |
+
<td><b>Average Score</b></td>
|
207 |
+
<td><b>%</b></td>
|
208 |
+
<td><b>%</b></td>
|
209 |
+
<td><b>%</b></td>
|
210 |
+
</tr>
|
211 |
+
</tbody>
|
212 |
+
</table>
|
213 |
+
|