File size: 26,874 Bytes
3324447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
# SPDX-License-Identifier: Apache-2.0
from copy import deepcopy
from typing import Any, Callable, Optional, Union

import torch

import vllm.model_executor.layers.fused_moe  # noqa
from vllm import _custom_ops as ops
from vllm.logger import init_logger
from vllm.model_executor.layers.fused_moe.layer import (
    FusedMoE, FusedMoEMethodBase, FusedMoeWeightScaleSupported, UnquantizedFusedMoEMethod)
from vllm.model_executor.layers.linear import (LinearMethodBase,
                                               set_weight_attrs)
from vllm.model_executor.layers.quantization import QuantizationMethods
from vllm.model_executor.layers.quantization.base_config import (
    QuantizationConfig, QuantizeMethodBase)
from vllm.model_executor.layers.quantization.kernels.mixed_precision import (
    MPLinearLayerConfig, choose_mp_linear_kernel)
from vllm.model_executor.layers.quantization.utils import replace_parameter
from vllm.model_executor.layers.quantization.utils.gptq_utils import (
    get_linear_quant_method, override_config, get_dynamic_override)
from vllm.model_executor.layers.quantization.utils.marlin_utils import (
    check_marlin_supported, check_moe_marlin_supports_layer,
    marlin_make_workspace_new, marlin_moe_permute_scales,
    marlin_repeat_scales_on_all_ranks, verify_marlin_supported)
from vllm.model_executor.parameter import (ChannelQuantScaleParameter,
                                           GroupQuantScaleParameter,
                                           PackedColumnParameter,
                                           PackedvLLMParameter,
                                           RowvLLMParameter)
from vllm.platforms import current_platform
from vllm.scalar_type import scalar_types

logger = init_logger(__name__)


def get_moe_quant_method(
        config: QuantizationConfig,
        layer: torch.nn.Module,
        prefix: str,
        moe_method_cls: type,
    ):
    cloned_config = deepcopy(config)

    if isinstance(layer, FusedMoE):
        # False = skip module, None = no override, else = Positive match
        if get_dynamic_override(  # noqa: E712
                cloned_config,  # noqa: E712
                layer_name=prefix) == False:  # noqa: E712
            return UnquantizedFusedMoEMethod(layer.moe_config)

        if prefix:
            # Dynamic per module/layer rules may override base config
            override_config(cloned_config, prefix=prefix)

        return moe_method_cls(cloned_config)
    return None
    

class GPTQMarlinConfig(QuantizationConfig):
    """Config class for GPTQ Marlin"""

    # (num_bits, is_sym) -> quant_type
    TYPE_MAP = {
        (4, True): scalar_types.uint4b8,
        (8, True): scalar_types.uint8b128,
    }

    def __init__(self, weight_bits: int, group_size: int, desc_act: bool,
                 is_sym: bool, lm_head_quantized: bool,
                 dynamic: dict[str, dict[str, Union[int, bool]]],
                 full_config: dict[str, Any]) -> None:
        super().__init__()
        if desc_act and group_size == -1:
            # In this case, act_order == True is the same as act_order == False
            # (since we have only one group per output channel)
            desc_act = False

        # GPTQModel use `dynamic` config property to allow per module
        # quantization config so each module can be individually optimized.
        # Format is dict[str, dict] where key is a regex string that can
        # perform both positive ("+:" prefixed) or negative ("-:" prefixed)
        # matching of a module.
        # Default to positive match, override base quant config mode, if no
        # prefix is used. Value is in dict format of field key and override
        # value.
        # Negative matching will skip quantization init for this module
        # entirely:
        # non-quantized inference. More details and quantization examples can be
        # found at: https://github.com/ModelCloud/GPTQModel
        # Example:
        #  # last 1/2 of the layers 10-21 has 8bit vs 4bit for 0-9
        #  # last 1/4 of the layers 16-21 has 8bit and group_size 64
        # dynamic = {
        #  #`.*\.` matches the layers_node prefix
        #  # positive match layer 10-15
        #  r"+:.*\.(?:1[0-5])\..*": {"bits": 8,},
        #  # positive match layer 16-21
        #  r"+:.*\.(?:1[6-9]|20|21)\..*": {"bits": 8, "group_size": 64,},
        #  r"-:.*\.moe\..*": {}, # negative match (skip) all `moe` layers
        # }
        self.dynamic = dynamic

        self.weight_bits = weight_bits
        self.is_sym = is_sym

        self.pack_factor = 32 // weight_bits  # packed into int32
        self.group_size = group_size
        self.desc_act = desc_act
        self.lm_head_quantized = lm_head_quantized
        self.full_config = full_config

        if (weight_bits, is_sym) not in self.TYPE_MAP:
            raise ValueError("Unsupported quantization config: "
                             f"bits={weight_bits}, sym={is_sym}")

        self.quant_type = self.TYPE_MAP[(weight_bits, is_sym)]

    def __repr__(self) -> str:
        return (f"GPTQMarlinConfig(quant_type={self.quant_type}, "
                f"group_size={self.group_size}, "
                f"desc_act={self.desc_act}, "
                f"lm_head_quantized={self.lm_head_quantized}), "
                f"dynamic={self.dynamic}")

    @classmethod
    def get_name(cls) -> QuantizationMethods:
        return "gptq_marlin"

    @classmethod
    def get_supported_act_dtypes(cls) -> list[torch.dtype]:
        return [torch.half, torch.bfloat16]

    @classmethod
    def get_min_capability(cls) -> int:
        return 80

    @classmethod
    def get_config_filenames(cls) -> list[str]:
        return ["quantize_config.json"]

    @classmethod
    def from_config(cls, config: dict[str, Any]) -> "GPTQMarlinConfig":
        dynamic = cls.get_from_keys_or(config, ["dynamic"], default={})
        dynamic = {} if dynamic is None else dynamic

        weight_bits = cls.get_from_keys(config, ["bits"])
        group_size = cls.get_from_keys(config, ["group_size"])
        desc_act = cls.get_from_keys(config, ["desc_act"])
        is_sym = cls.get_from_keys(config, ["sym"])
        lm_head_quantized = cls.get_from_keys_or(config, ["lm_head"],
                                                 default=False)
        return cls(weight_bits, group_size, desc_act, is_sym,
                   lm_head_quantized, dynamic, config)

    @classmethod
    def override_quantization_method(
            cls, hf_quant_cfg, user_quant) -> Optional[QuantizationMethods]:
        can_convert = cls.is_gptq_marlin_compatible(hf_quant_cfg)

        is_valid_user_quant = (user_quant is None or user_quant == "marlin"
                               or user_quant == "gptq_marlin")

        if can_convert and is_valid_user_quant:
            msg = ("The model is convertible to {} during runtime."
                   " Using {} kernel.".format(cls.get_name(), cls.get_name()))
            logger.info(msg)
            return cls.get_name()

        if can_convert and user_quant == "gptq":
            logger.info("Detected that the model can run with gptq_marlin"
                        ", however you specified quantization=gptq explicitly,"
                        " so forcing gptq. Use quantization=gptq_marlin for"
                        " faster inference")
        return None

    def get_quant_method(self, layer: torch.nn.Module,
                         prefix: str) -> Optional["QuantizeMethodBase"]:
        if isinstance(layer, FusedMoE):
            from vllm.model_executor.layers.quantization.moe_wna16 import (
                MoeWNA16Config)
            if not check_moe_marlin_supports_layer(layer, self.group_size):
                logger.warning_once(
                    f"Layer '{prefix}' is not supported by GPTQMoeMarlin. "
                    "Falling back to Moe WNA16 kernels.")
                return MoeWNA16Config.from_config(
                    self.full_config).get_quant_method(layer, prefix)
            return get_moe_quant_method(self, layer, prefix, GPTQMarlinMoEMethod)
        return get_linear_quant_method(self, layer, prefix, GPTQMarlinLinearMethod)

    @classmethod
    def is_gptq_marlin_compatible(cls, quant_config: dict[str, Any]):
        quant_method = quant_config.get("quant_method", "").lower()
        num_bits = quant_config.get("bits")
        group_size = quant_config.get("group_size")
        sym = quant_config.get("sym")
        desc_act = quant_config.get("desc_act")

        if not current_platform.is_cuda():
            return False

        if quant_method != "gptq":
            return False

        # Marlin conversion is only valid if required properties are found
        if (num_bits is None or group_size is None or sym is None
                or desc_act is None):
            return False

        if (num_bits, sym) not in cls.TYPE_MAP:
            return False

        return check_marlin_supported(quant_type=cls.TYPE_MAP[(num_bits, sym)],
                                      group_size=group_size)


class GPTQMarlinLinearMethod(LinearMethodBase):
    """Linear method for GPTQ Marlin.

    Args:
        quant_config: The GPTQ Marlin quantization config.
    """

    _kernel_backends_being_used: set[str] = set()

    def __init__(self, quant_config: GPTQMarlinConfig) -> None:
        self.quant_config = quant_config

        # Verify supported on platform.
        verify_marlin_supported(quant_type=self.quant_config.quant_type,
                                group_size=self.quant_config.group_size)

    def create_weights(
        self,
        layer: torch.nn.Module,
        input_size_per_partition: int,
        output_partition_sizes: list[int],
        input_size: int,
        output_size: int,
        params_dtype: torch.dtype,
        **extra_weight_attrs,
    ) -> None:
        output_size_per_partition = sum(output_partition_sizes)
        is_row_parallel = input_size != input_size_per_partition
        weight_loader = extra_weight_attrs.get("weight_loader")

        mp_linear_kernel_config = MPLinearLayerConfig(
            full_weight_shape=(input_size, output_size),
            partition_weight_shape=\
                (input_size_per_partition, output_size_per_partition),
            weight_type=self.quant_config.quant_type,
            act_type=params_dtype,
            group_size=self.quant_config.group_size,
            zero_points=False,
            has_g_idx=self.quant_config.desc_act
        )

        kernel_type = choose_mp_linear_kernel(mp_linear_kernel_config)

        if kernel_type.__name__ not in self._kernel_backends_being_used:
            logger.info("Using %s for GPTQMarlinLinearMethod",
                        kernel_type.__name__)
            self._kernel_backends_being_used.add(kernel_type.__name__)

        # Normalize group_size
        if self.quant_config.group_size != -1:
            group_size = self.quant_config.group_size
        else:
            group_size = input_size

        # Determine sharding
        if marlin_repeat_scales_on_all_ranks(self.quant_config.desc_act,
                                             self.quant_config.group_size,
                                             is_row_parallel):
            # By setting scale_dim == None, weight_loader will
            # repeat the scales on each GPU in TP>1 case.
            scales_and_zp_input_dim = None
            scales_and_zp_size = input_size // group_size
        else:
            # By setting scale_dim == 0, weight_loader will
            # shard the scales in TP>1 case.
            scales_and_zp_input_dim = 0
            scales_and_zp_size = input_size_per_partition // group_size

        # Quantized weights
        qweight = PackedvLLMParameter(
            data=torch.empty(
                input_size_per_partition // self.quant_config.pack_factor,
                output_size_per_partition,
                dtype=torch.int32,
            ),
            input_dim=0,
            output_dim=1,
            packed_dim=0,
            packed_factor=self.quant_config.pack_factor,
            weight_loader=weight_loader)

        # Activation order
        g_idx = RowvLLMParameter(data=torch.empty(
            input_size_per_partition,
            dtype=torch.int32,
        ),
                                 input_dim=0,
                                 weight_loader=weight_loader)

        qzeros_args = {
            "data":
            torch.empty(
                scales_and_zp_size,
                output_size_per_partition // self.quant_config.pack_factor,
                dtype=torch.int32,
            ),
            "weight_loader":
            weight_loader
        }
        weight_scale_args = {
            "data":
            torch.empty(
                scales_and_zp_size,
                output_size_per_partition,
                dtype=params_dtype,
            ),
            "weight_loader":
            weight_loader
        }

        if scales_and_zp_input_dim is None:
            scales = ChannelQuantScaleParameter(output_dim=1,
                                                **weight_scale_args)
            qzeros = PackedColumnParameter(
                output_dim=1,
                packed_dim=1,
                packed_factor=self.quant_config.pack_factor,
                **qzeros_args)

        else:
            scales = GroupQuantScaleParameter(output_dim=1,
                                              input_dim=0,
                                              **weight_scale_args)
            qzeros = PackedvLLMParameter(
                input_dim=0,
                output_dim=1,
                packed_dim=1,
                packed_factor=self.quant_config.pack_factor,
                **qzeros_args)

        layer.register_parameter("qweight", qweight)
        layer.register_parameter("g_idx", g_idx)
        layer.register_parameter("scales", scales)
        layer.register_parameter("qzeros", qzeros)

        self.kernel = kernel_type(mp_linear_kernel_config,
                                  w_q_param_name="qweight",
                                  w_s_param_name="scales",
                                  w_zp_param_name="qzeros",
                                  w_gidx_param_name="g_idx")

    def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
        self.kernel.process_weights_after_loading(layer)

    def apply(
        self,
        layer: torch.nn.Module,
        x: torch.Tensor,
        bias: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        return self.kernel.apply_weights(layer, x, bias)


class GPTQMarlinMoEMethod(FusedMoEMethodBase):
    """MoE Marlin method with quantization."""

    def __init__(self, quant_config: GPTQMarlinConfig) -> None:
        self.quant_config = quant_config
        if self.quant_config.quant_type.size_bits == 4:
            self.quant_type = scalar_types.uint4b8
        elif self.quant_config.quant_type.size_bits == 8:
            self.quant_type = scalar_types.uint8b128
        else:
            raise ValueError(
                "GPTQMarlinMoEMethod only supports int4 and int8 now.")

    def create_weights(
        self,
        layer: torch.nn.Module,
        num_experts: int,
        hidden_size: int,
        intermediate_size_per_partition: int,
        params_dtype: torch.dtype,
        **extra_weight_attrs,
    ):
        intermediate_size_full = extra_weight_attrs.pop(
            "intermediate_size_full")

        self.is_k_full = (not self.quant_config.desc_act) or (
            intermediate_size_per_partition == intermediate_size_full)

        if self.quant_config.group_size != -1:
            scales_size13 = hidden_size // self.quant_config.group_size
            w2_scales_size = (intermediate_size_full
                              if self.quant_config.desc_act else
                              intermediate_size_per_partition)
            scales_size2 = (w2_scales_size // self.quant_config.group_size)
            strategy = FusedMoeWeightScaleSupported.GROUP.value
        else:
            scales_size13 = 1
            scales_size2 = 1
            strategy = FusedMoeWeightScaleSupported.CHANNEL.value

        extra_weight_attrs.update({
            "quant_method": strategy,
            "is_transposed": True
        })
        # Fused gate_up_proj (column parallel)
        w13_qweight = torch.nn.Parameter(
            torch.empty(
                num_experts,
                hidden_size // self.quant_config.pack_factor,
                2 * intermediate_size_per_partition,
                dtype=torch.int32,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w13_qweight", w13_qweight)
        set_weight_attrs(w13_qweight, extra_weight_attrs)
        # down_proj (row parallel)
        w2_qweight = torch.nn.Parameter(
            torch.empty(
                num_experts,
                intermediate_size_per_partition //
                self.quant_config.pack_factor,
                hidden_size,
                dtype=torch.int32,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w2_qweight", w2_qweight)
        set_weight_attrs(w2_qweight, extra_weight_attrs)
        # up_proj scales
        w13_scales = torch.nn.Parameter(
            torch.empty(num_experts,
                        scales_size13,
                        2 * intermediate_size_per_partition,
                        dtype=params_dtype),
            requires_grad=False,
        )
        layer.register_parameter("w13_scales", w13_scales)
        set_weight_attrs(w13_scales, extra_weight_attrs)
        # down_proj scales
        w2_scales = torch.nn.Parameter(
            torch.empty(num_experts,
                        scales_size2,
                        hidden_size,
                        dtype=params_dtype),
            requires_grad=False,
        )
        layer.register_parameter("w2_scales", w2_scales)
        set_weight_attrs(w2_scales, extra_weight_attrs)
        # dont shard the w2 scales when running act order
        set_weight_attrs(w2_scales,
                         {"load_full_w2": self.quant_config.desc_act})
        # up_proj scales
        w13_qzeros = torch.nn.Parameter(
            torch.empty(num_experts,
                        scales_size13,
                        2 * intermediate_size_per_partition //
                        self.quant_config.pack_factor,
                        dtype=params_dtype),
            requires_grad=False,
        )
        layer.register_parameter("w13_qzeros", w13_qzeros)
        set_weight_attrs(w13_qzeros, extra_weight_attrs)
        # down_proj scales
        w2_qzeros = torch.nn.Parameter(
            torch.empty(num_experts,
                        scales_size2,
                        hidden_size // self.quant_config.pack_factor,
                        dtype=params_dtype),
            requires_grad=False,
        )
        layer.register_parameter("w2_qzeros", w2_qzeros)
        set_weight_attrs(w2_qzeros, extra_weight_attrs)
        # dont shard the w2 scales when running act order
        set_weight_attrs(w2_qzeros,
                         {"load_full_w2": self.quant_config.desc_act})
        w13_g_idx = torch.nn.Parameter(
            torch.empty(
                num_experts,
                hidden_size,
                dtype=torch.int32,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w13_g_idx", w13_g_idx)
        set_weight_attrs(w13_g_idx, extra_weight_attrs)
        w2_g_idx = torch.nn.Parameter(
            torch.empty(
                num_experts,
                intermediate_size_per_partition,
                dtype=torch.int32,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w2_g_idx", w2_g_idx)
        set_weight_attrs(w2_g_idx, extra_weight_attrs)
        w13_g_idx_sort_indices = torch.nn.Parameter(
            torch.empty(
                num_experts,
                hidden_size,
                dtype=torch.int32,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w13_g_idx_sort_indices",
                                 w13_g_idx_sort_indices)
        set_weight_attrs(w13_g_idx_sort_indices, extra_weight_attrs)
        w2_g_idx_sort_indices = torch.nn.Parameter(
            torch.empty(
                num_experts,
                intermediate_size_per_partition,
                dtype=torch.int32,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w2_g_idx_sort_indices",
                                 w2_g_idx_sort_indices)
        set_weight_attrs(w2_g_idx_sort_indices, extra_weight_attrs)

        device = layer.w13_qweight.device
        layer.workspace = marlin_make_workspace_new(device, 4)

    def process_weights_after_loading(self, layer: torch.nn.Module) -> None:

        # Process act_order
        if self.quant_config.desc_act:
            # Get sorting based on g_idx
            num_experts = layer.w13_g_idx.shape[0]
            w13_g_idx_sort_indices = torch.empty_like(layer.w13_g_idx)
            w2_g_idx_sort_indices = torch.empty_like(layer.w2_g_idx)
            w13_sorted_g_idx = torch.empty_like(layer.w13_g_idx)
            w2_sorted_g_idx = torch.empty_like(layer.w2_g_idx)
            for e in range(num_experts):
                w13_g_idx_sort_indices[e] = torch.argsort(
                    layer.w13_g_idx[e]).to(torch.int32)
                w2_g_idx_sort_indices[e] = torch.argsort(layer.w2_g_idx[e]).to(
                    torch.int32)
                w13_sorted_g_idx[e] = layer.w13_g_idx[e][
                    w13_g_idx_sort_indices[e]]
                w2_sorted_g_idx[e] = layer.w2_g_idx[e][
                    w2_g_idx_sort_indices[e]]
            replace_parameter(layer, "w13_g_idx", w13_sorted_g_idx)
            replace_parameter(layer, "w2_g_idx", w2_sorted_g_idx)
            replace_parameter(layer, "w13_g_idx_sort_indices",
                              w13_g_idx_sort_indices)
            replace_parameter(layer, "w2_g_idx_sort_indices",
                              w2_g_idx_sort_indices)
        else:
            # Reset g_idx related tensors
            num_experts = layer.w13_g_idx.shape[0]
            device = layer.w13_g_idx.device
            layer.w13_g_idx = torch.nn.Parameter(
                torch.empty((num_experts, 0), dtype=torch.int32,
                            device=device),
                requires_grad=False,
            )
            layer.w2_g_idx = torch.nn.Parameter(
                torch.empty((num_experts, 0), dtype=torch.int32,
                            device=device),
                requires_grad=False,
            )
            layer.w13_g_idx_sort_indices = torch.nn.Parameter(
                torch.empty((num_experts, 0), dtype=torch.int32,
                            device=device),
                requires_grad=False,
            )
            layer.w2_g_idx_sort_indices = torch.nn.Parameter(
                torch.empty((num_experts, 0), dtype=torch.int32,
                            device=device),
                requires_grad=False,
            )
        # Repack weights
        marlin_w13_qweight = ops.gptq_marlin_moe_repack(
            layer.w13_qweight,
            layer.w13_g_idx_sort_indices,
            layer.w13_qweight.shape[1] * self.quant_config.pack_factor,
            layer.w13_qweight.shape[2],
            self.quant_config.quant_type.size_bits,
        )
        replace_parameter(layer, "w13_qweight", marlin_w13_qweight)
        marlin_w2_qweight = ops.gptq_marlin_moe_repack(
            layer.w2_qweight,
            layer.w2_g_idx_sort_indices,
            layer.w2_qweight.shape[1] * self.quant_config.pack_factor,
            layer.w2_qweight.shape[2],
            self.quant_config.quant_type.size_bits,
        )
        replace_parameter(layer, "w2_qweight", marlin_w2_qweight)
        # Repack scales
        marlin_w13_scales = marlin_moe_permute_scales(
            s=layer.w13_scales,
            size_k=layer.intermediate_size_per_partition,
            size_n=layer.w13_scales.shape[2],
            group_size=self.quant_config.group_size,
        )
        replace_parameter(layer, "w13_scales", marlin_w13_scales)
        marlin_w2_scales = marlin_moe_permute_scales(
            s=layer.w2_scales,
            size_k=layer.w2_scales.shape[1] *
            (self.quant_config.group_size if self.quant_config.group_size != -1
             else self.quant_config.pack_factor),
            size_n=layer.w2_scales.shape[2],
            group_size=self.quant_config.group_size,
        )
        replace_parameter(layer, "w2_scales", marlin_w2_scales)

    def apply(
        self,
        layer: torch.nn.Module,
        x: torch.Tensor,
        router_logits: torch.Tensor,
        top_k: int,
        renormalize: bool,
        use_grouped_topk: bool = False,
        topk_group: Optional[int] = None,
        num_expert_group: Optional[int] = None,
        global_num_experts: int = -1,
        expert_map: Optional[torch.Tensor] = None,
        custom_routing_function: Optional[Callable] = None,
        scoring_func: str = "softmax",
        e_score_correction_bias: Optional[torch.Tensor] = None,
        apply_router_weight_on_input: bool = False,
        activation: str = "silu",
    ) -> torch.Tensor:
        assert activation == "silu", "Only SiLU activation is supported."
        if apply_router_weight_on_input:
            raise NotImplementedError(
                "Apply router weight on input is not supported for "
                "fused Marlin MoE method.")

        topk_weights, topk_ids = FusedMoE.select_experts(
            hidden_states=x,
            router_logits=router_logits,
            use_grouped_topk=use_grouped_topk,
            top_k=top_k,
            renormalize=renormalize,
            topk_group=topk_group,
            num_expert_group=num_expert_group,
            custom_routing_function=custom_routing_function,
            scoring_func=scoring_func,
            e_score_correction_bias=e_score_correction_bias)

        return torch.ops.vllm.fused_marlin_moe(
            x,
            layer.w13_qweight,
            layer.w2_qweight,
            layer.w13_scales,
            layer.w2_scales,
            router_logits,
            topk_weights,
            topk_ids,
            quant_type_id=self.quant_type.id,
            global_num_experts=global_num_experts,
            expert_map=expert_map,
            g_idx1=layer.w13_g_idx,
            g_idx2=layer.w2_g_idx,
            sort_indices1=layer.w13_g_idx_sort_indices,
            sort_indices2=layer.w2_g_idx_sort_indices,
            workspace=layer.workspace,
            is_k_full=self.is_k_full)