File size: 26,874 Bytes
3324447 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 |
# SPDX-License-Identifier: Apache-2.0
from copy import deepcopy
from typing import Any, Callable, Optional, Union
import torch
import vllm.model_executor.layers.fused_moe # noqa
from vllm import _custom_ops as ops
from vllm.logger import init_logger
from vllm.model_executor.layers.fused_moe.layer import (
FusedMoE, FusedMoEMethodBase, FusedMoeWeightScaleSupported, UnquantizedFusedMoEMethod)
from vllm.model_executor.layers.linear import (LinearMethodBase,
set_weight_attrs)
from vllm.model_executor.layers.quantization import QuantizationMethods
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig, QuantizeMethodBase)
from vllm.model_executor.layers.quantization.kernels.mixed_precision import (
MPLinearLayerConfig, choose_mp_linear_kernel)
from vllm.model_executor.layers.quantization.utils import replace_parameter
from vllm.model_executor.layers.quantization.utils.gptq_utils import (
get_linear_quant_method, override_config, get_dynamic_override)
from vllm.model_executor.layers.quantization.utils.marlin_utils import (
check_marlin_supported, check_moe_marlin_supports_layer,
marlin_make_workspace_new, marlin_moe_permute_scales,
marlin_repeat_scales_on_all_ranks, verify_marlin_supported)
from vllm.model_executor.parameter import (ChannelQuantScaleParameter,
GroupQuantScaleParameter,
PackedColumnParameter,
PackedvLLMParameter,
RowvLLMParameter)
from vllm.platforms import current_platform
from vllm.scalar_type import scalar_types
logger = init_logger(__name__)
def get_moe_quant_method(
config: QuantizationConfig,
layer: torch.nn.Module,
prefix: str,
moe_method_cls: type,
):
cloned_config = deepcopy(config)
if isinstance(layer, FusedMoE):
# False = skip module, None = no override, else = Positive match
if get_dynamic_override( # noqa: E712
cloned_config, # noqa: E712
layer_name=prefix) == False: # noqa: E712
return UnquantizedFusedMoEMethod(layer.moe_config)
if prefix:
# Dynamic per module/layer rules may override base config
override_config(cloned_config, prefix=prefix)
return moe_method_cls(cloned_config)
return None
class GPTQMarlinConfig(QuantizationConfig):
"""Config class for GPTQ Marlin"""
# (num_bits, is_sym) -> quant_type
TYPE_MAP = {
(4, True): scalar_types.uint4b8,
(8, True): scalar_types.uint8b128,
}
def __init__(self, weight_bits: int, group_size: int, desc_act: bool,
is_sym: bool, lm_head_quantized: bool,
dynamic: dict[str, dict[str, Union[int, bool]]],
full_config: dict[str, Any]) -> None:
super().__init__()
if desc_act and group_size == -1:
# In this case, act_order == True is the same as act_order == False
# (since we have only one group per output channel)
desc_act = False
# GPTQModel use `dynamic` config property to allow per module
# quantization config so each module can be individually optimized.
# Format is dict[str, dict] where key is a regex string that can
# perform both positive ("+:" prefixed) or negative ("-:" prefixed)
# matching of a module.
# Default to positive match, override base quant config mode, if no
# prefix is used. Value is in dict format of field key and override
# value.
# Negative matching will skip quantization init for this module
# entirely:
# non-quantized inference. More details and quantization examples can be
# found at: https://github.com/ModelCloud/GPTQModel
# Example:
# # last 1/2 of the layers 10-21 has 8bit vs 4bit for 0-9
# # last 1/4 of the layers 16-21 has 8bit and group_size 64
# dynamic = {
# #`.*\.` matches the layers_node prefix
# # positive match layer 10-15
# r"+:.*\.(?:1[0-5])\..*": {"bits": 8,},
# # positive match layer 16-21
# r"+:.*\.(?:1[6-9]|20|21)\..*": {"bits": 8, "group_size": 64,},
# r"-:.*\.moe\..*": {}, # negative match (skip) all `moe` layers
# }
self.dynamic = dynamic
self.weight_bits = weight_bits
self.is_sym = is_sym
self.pack_factor = 32 // weight_bits # packed into int32
self.group_size = group_size
self.desc_act = desc_act
self.lm_head_quantized = lm_head_quantized
self.full_config = full_config
if (weight_bits, is_sym) not in self.TYPE_MAP:
raise ValueError("Unsupported quantization config: "
f"bits={weight_bits}, sym={is_sym}")
self.quant_type = self.TYPE_MAP[(weight_bits, is_sym)]
def __repr__(self) -> str:
return (f"GPTQMarlinConfig(quant_type={self.quant_type}, "
f"group_size={self.group_size}, "
f"desc_act={self.desc_act}, "
f"lm_head_quantized={self.lm_head_quantized}), "
f"dynamic={self.dynamic}")
@classmethod
def get_name(cls) -> QuantizationMethods:
return "gptq_marlin"
@classmethod
def get_supported_act_dtypes(cls) -> list[torch.dtype]:
return [torch.half, torch.bfloat16]
@classmethod
def get_min_capability(cls) -> int:
return 80
@classmethod
def get_config_filenames(cls) -> list[str]:
return ["quantize_config.json"]
@classmethod
def from_config(cls, config: dict[str, Any]) -> "GPTQMarlinConfig":
dynamic = cls.get_from_keys_or(config, ["dynamic"], default={})
dynamic = {} if dynamic is None else dynamic
weight_bits = cls.get_from_keys(config, ["bits"])
group_size = cls.get_from_keys(config, ["group_size"])
desc_act = cls.get_from_keys(config, ["desc_act"])
is_sym = cls.get_from_keys(config, ["sym"])
lm_head_quantized = cls.get_from_keys_or(config, ["lm_head"],
default=False)
return cls(weight_bits, group_size, desc_act, is_sym,
lm_head_quantized, dynamic, config)
@classmethod
def override_quantization_method(
cls, hf_quant_cfg, user_quant) -> Optional[QuantizationMethods]:
can_convert = cls.is_gptq_marlin_compatible(hf_quant_cfg)
is_valid_user_quant = (user_quant is None or user_quant == "marlin"
or user_quant == "gptq_marlin")
if can_convert and is_valid_user_quant:
msg = ("The model is convertible to {} during runtime."
" Using {} kernel.".format(cls.get_name(), cls.get_name()))
logger.info(msg)
return cls.get_name()
if can_convert and user_quant == "gptq":
logger.info("Detected that the model can run with gptq_marlin"
", however you specified quantization=gptq explicitly,"
" so forcing gptq. Use quantization=gptq_marlin for"
" faster inference")
return None
def get_quant_method(self, layer: torch.nn.Module,
prefix: str) -> Optional["QuantizeMethodBase"]:
if isinstance(layer, FusedMoE):
from vllm.model_executor.layers.quantization.moe_wna16 import (
MoeWNA16Config)
if not check_moe_marlin_supports_layer(layer, self.group_size):
logger.warning_once(
f"Layer '{prefix}' is not supported by GPTQMoeMarlin. "
"Falling back to Moe WNA16 kernels.")
return MoeWNA16Config.from_config(
self.full_config).get_quant_method(layer, prefix)
return get_moe_quant_method(self, layer, prefix, GPTQMarlinMoEMethod)
return get_linear_quant_method(self, layer, prefix, GPTQMarlinLinearMethod)
@classmethod
def is_gptq_marlin_compatible(cls, quant_config: dict[str, Any]):
quant_method = quant_config.get("quant_method", "").lower()
num_bits = quant_config.get("bits")
group_size = quant_config.get("group_size")
sym = quant_config.get("sym")
desc_act = quant_config.get("desc_act")
if not current_platform.is_cuda():
return False
if quant_method != "gptq":
return False
# Marlin conversion is only valid if required properties are found
if (num_bits is None or group_size is None or sym is None
or desc_act is None):
return False
if (num_bits, sym) not in cls.TYPE_MAP:
return False
return check_marlin_supported(quant_type=cls.TYPE_MAP[(num_bits, sym)],
group_size=group_size)
class GPTQMarlinLinearMethod(LinearMethodBase):
"""Linear method for GPTQ Marlin.
Args:
quant_config: The GPTQ Marlin quantization config.
"""
_kernel_backends_being_used: set[str] = set()
def __init__(self, quant_config: GPTQMarlinConfig) -> None:
self.quant_config = quant_config
# Verify supported on platform.
verify_marlin_supported(quant_type=self.quant_config.quant_type,
group_size=self.quant_config.group_size)
def create_weights(
self,
layer: torch.nn.Module,
input_size_per_partition: int,
output_partition_sizes: list[int],
input_size: int,
output_size: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
) -> None:
output_size_per_partition = sum(output_partition_sizes)
is_row_parallel = input_size != input_size_per_partition
weight_loader = extra_weight_attrs.get("weight_loader")
mp_linear_kernel_config = MPLinearLayerConfig(
full_weight_shape=(input_size, output_size),
partition_weight_shape=\
(input_size_per_partition, output_size_per_partition),
weight_type=self.quant_config.quant_type,
act_type=params_dtype,
group_size=self.quant_config.group_size,
zero_points=False,
has_g_idx=self.quant_config.desc_act
)
kernel_type = choose_mp_linear_kernel(mp_linear_kernel_config)
if kernel_type.__name__ not in self._kernel_backends_being_used:
logger.info("Using %s for GPTQMarlinLinearMethod",
kernel_type.__name__)
self._kernel_backends_being_used.add(kernel_type.__name__)
# Normalize group_size
if self.quant_config.group_size != -1:
group_size = self.quant_config.group_size
else:
group_size = input_size
# Determine sharding
if marlin_repeat_scales_on_all_ranks(self.quant_config.desc_act,
self.quant_config.group_size,
is_row_parallel):
# By setting scale_dim == None, weight_loader will
# repeat the scales on each GPU in TP>1 case.
scales_and_zp_input_dim = None
scales_and_zp_size = input_size // group_size
else:
# By setting scale_dim == 0, weight_loader will
# shard the scales in TP>1 case.
scales_and_zp_input_dim = 0
scales_and_zp_size = input_size_per_partition // group_size
# Quantized weights
qweight = PackedvLLMParameter(
data=torch.empty(
input_size_per_partition // self.quant_config.pack_factor,
output_size_per_partition,
dtype=torch.int32,
),
input_dim=0,
output_dim=1,
packed_dim=0,
packed_factor=self.quant_config.pack_factor,
weight_loader=weight_loader)
# Activation order
g_idx = RowvLLMParameter(data=torch.empty(
input_size_per_partition,
dtype=torch.int32,
),
input_dim=0,
weight_loader=weight_loader)
qzeros_args = {
"data":
torch.empty(
scales_and_zp_size,
output_size_per_partition // self.quant_config.pack_factor,
dtype=torch.int32,
),
"weight_loader":
weight_loader
}
weight_scale_args = {
"data":
torch.empty(
scales_and_zp_size,
output_size_per_partition,
dtype=params_dtype,
),
"weight_loader":
weight_loader
}
if scales_and_zp_input_dim is None:
scales = ChannelQuantScaleParameter(output_dim=1,
**weight_scale_args)
qzeros = PackedColumnParameter(
output_dim=1,
packed_dim=1,
packed_factor=self.quant_config.pack_factor,
**qzeros_args)
else:
scales = GroupQuantScaleParameter(output_dim=1,
input_dim=0,
**weight_scale_args)
qzeros = PackedvLLMParameter(
input_dim=0,
output_dim=1,
packed_dim=1,
packed_factor=self.quant_config.pack_factor,
**qzeros_args)
layer.register_parameter("qweight", qweight)
layer.register_parameter("g_idx", g_idx)
layer.register_parameter("scales", scales)
layer.register_parameter("qzeros", qzeros)
self.kernel = kernel_type(mp_linear_kernel_config,
w_q_param_name="qweight",
w_s_param_name="scales",
w_zp_param_name="qzeros",
w_gidx_param_name="g_idx")
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
self.kernel.process_weights_after_loading(layer)
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
return self.kernel.apply_weights(layer, x, bias)
class GPTQMarlinMoEMethod(FusedMoEMethodBase):
"""MoE Marlin method with quantization."""
def __init__(self, quant_config: GPTQMarlinConfig) -> None:
self.quant_config = quant_config
if self.quant_config.quant_type.size_bits == 4:
self.quant_type = scalar_types.uint4b8
elif self.quant_config.quant_type.size_bits == 8:
self.quant_type = scalar_types.uint8b128
else:
raise ValueError(
"GPTQMarlinMoEMethod only supports int4 and int8 now.")
def create_weights(
self,
layer: torch.nn.Module,
num_experts: int,
hidden_size: int,
intermediate_size_per_partition: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
):
intermediate_size_full = extra_weight_attrs.pop(
"intermediate_size_full")
self.is_k_full = (not self.quant_config.desc_act) or (
intermediate_size_per_partition == intermediate_size_full)
if self.quant_config.group_size != -1:
scales_size13 = hidden_size // self.quant_config.group_size
w2_scales_size = (intermediate_size_full
if self.quant_config.desc_act else
intermediate_size_per_partition)
scales_size2 = (w2_scales_size // self.quant_config.group_size)
strategy = FusedMoeWeightScaleSupported.GROUP.value
else:
scales_size13 = 1
scales_size2 = 1
strategy = FusedMoeWeightScaleSupported.CHANNEL.value
extra_weight_attrs.update({
"quant_method": strategy,
"is_transposed": True
})
# Fused gate_up_proj (column parallel)
w13_qweight = torch.nn.Parameter(
torch.empty(
num_experts,
hidden_size // self.quant_config.pack_factor,
2 * intermediate_size_per_partition,
dtype=torch.int32,
),
requires_grad=False,
)
layer.register_parameter("w13_qweight", w13_qweight)
set_weight_attrs(w13_qweight, extra_weight_attrs)
# down_proj (row parallel)
w2_qweight = torch.nn.Parameter(
torch.empty(
num_experts,
intermediate_size_per_partition //
self.quant_config.pack_factor,
hidden_size,
dtype=torch.int32,
),
requires_grad=False,
)
layer.register_parameter("w2_qweight", w2_qweight)
set_weight_attrs(w2_qweight, extra_weight_attrs)
# up_proj scales
w13_scales = torch.nn.Parameter(
torch.empty(num_experts,
scales_size13,
2 * intermediate_size_per_partition,
dtype=params_dtype),
requires_grad=False,
)
layer.register_parameter("w13_scales", w13_scales)
set_weight_attrs(w13_scales, extra_weight_attrs)
# down_proj scales
w2_scales = torch.nn.Parameter(
torch.empty(num_experts,
scales_size2,
hidden_size,
dtype=params_dtype),
requires_grad=False,
)
layer.register_parameter("w2_scales", w2_scales)
set_weight_attrs(w2_scales, extra_weight_attrs)
# dont shard the w2 scales when running act order
set_weight_attrs(w2_scales,
{"load_full_w2": self.quant_config.desc_act})
# up_proj scales
w13_qzeros = torch.nn.Parameter(
torch.empty(num_experts,
scales_size13,
2 * intermediate_size_per_partition //
self.quant_config.pack_factor,
dtype=params_dtype),
requires_grad=False,
)
layer.register_parameter("w13_qzeros", w13_qzeros)
set_weight_attrs(w13_qzeros, extra_weight_attrs)
# down_proj scales
w2_qzeros = torch.nn.Parameter(
torch.empty(num_experts,
scales_size2,
hidden_size // self.quant_config.pack_factor,
dtype=params_dtype),
requires_grad=False,
)
layer.register_parameter("w2_qzeros", w2_qzeros)
set_weight_attrs(w2_qzeros, extra_weight_attrs)
# dont shard the w2 scales when running act order
set_weight_attrs(w2_qzeros,
{"load_full_w2": self.quant_config.desc_act})
w13_g_idx = torch.nn.Parameter(
torch.empty(
num_experts,
hidden_size,
dtype=torch.int32,
),
requires_grad=False,
)
layer.register_parameter("w13_g_idx", w13_g_idx)
set_weight_attrs(w13_g_idx, extra_weight_attrs)
w2_g_idx = torch.nn.Parameter(
torch.empty(
num_experts,
intermediate_size_per_partition,
dtype=torch.int32,
),
requires_grad=False,
)
layer.register_parameter("w2_g_idx", w2_g_idx)
set_weight_attrs(w2_g_idx, extra_weight_attrs)
w13_g_idx_sort_indices = torch.nn.Parameter(
torch.empty(
num_experts,
hidden_size,
dtype=torch.int32,
),
requires_grad=False,
)
layer.register_parameter("w13_g_idx_sort_indices",
w13_g_idx_sort_indices)
set_weight_attrs(w13_g_idx_sort_indices, extra_weight_attrs)
w2_g_idx_sort_indices = torch.nn.Parameter(
torch.empty(
num_experts,
intermediate_size_per_partition,
dtype=torch.int32,
),
requires_grad=False,
)
layer.register_parameter("w2_g_idx_sort_indices",
w2_g_idx_sort_indices)
set_weight_attrs(w2_g_idx_sort_indices, extra_weight_attrs)
device = layer.w13_qweight.device
layer.workspace = marlin_make_workspace_new(device, 4)
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
# Process act_order
if self.quant_config.desc_act:
# Get sorting based on g_idx
num_experts = layer.w13_g_idx.shape[0]
w13_g_idx_sort_indices = torch.empty_like(layer.w13_g_idx)
w2_g_idx_sort_indices = torch.empty_like(layer.w2_g_idx)
w13_sorted_g_idx = torch.empty_like(layer.w13_g_idx)
w2_sorted_g_idx = torch.empty_like(layer.w2_g_idx)
for e in range(num_experts):
w13_g_idx_sort_indices[e] = torch.argsort(
layer.w13_g_idx[e]).to(torch.int32)
w2_g_idx_sort_indices[e] = torch.argsort(layer.w2_g_idx[e]).to(
torch.int32)
w13_sorted_g_idx[e] = layer.w13_g_idx[e][
w13_g_idx_sort_indices[e]]
w2_sorted_g_idx[e] = layer.w2_g_idx[e][
w2_g_idx_sort_indices[e]]
replace_parameter(layer, "w13_g_idx", w13_sorted_g_idx)
replace_parameter(layer, "w2_g_idx", w2_sorted_g_idx)
replace_parameter(layer, "w13_g_idx_sort_indices",
w13_g_idx_sort_indices)
replace_parameter(layer, "w2_g_idx_sort_indices",
w2_g_idx_sort_indices)
else:
# Reset g_idx related tensors
num_experts = layer.w13_g_idx.shape[0]
device = layer.w13_g_idx.device
layer.w13_g_idx = torch.nn.Parameter(
torch.empty((num_experts, 0), dtype=torch.int32,
device=device),
requires_grad=False,
)
layer.w2_g_idx = torch.nn.Parameter(
torch.empty((num_experts, 0), dtype=torch.int32,
device=device),
requires_grad=False,
)
layer.w13_g_idx_sort_indices = torch.nn.Parameter(
torch.empty((num_experts, 0), dtype=torch.int32,
device=device),
requires_grad=False,
)
layer.w2_g_idx_sort_indices = torch.nn.Parameter(
torch.empty((num_experts, 0), dtype=torch.int32,
device=device),
requires_grad=False,
)
# Repack weights
marlin_w13_qweight = ops.gptq_marlin_moe_repack(
layer.w13_qweight,
layer.w13_g_idx_sort_indices,
layer.w13_qweight.shape[1] * self.quant_config.pack_factor,
layer.w13_qweight.shape[2],
self.quant_config.quant_type.size_bits,
)
replace_parameter(layer, "w13_qweight", marlin_w13_qweight)
marlin_w2_qweight = ops.gptq_marlin_moe_repack(
layer.w2_qweight,
layer.w2_g_idx_sort_indices,
layer.w2_qweight.shape[1] * self.quant_config.pack_factor,
layer.w2_qweight.shape[2],
self.quant_config.quant_type.size_bits,
)
replace_parameter(layer, "w2_qweight", marlin_w2_qweight)
# Repack scales
marlin_w13_scales = marlin_moe_permute_scales(
s=layer.w13_scales,
size_k=layer.intermediate_size_per_partition,
size_n=layer.w13_scales.shape[2],
group_size=self.quant_config.group_size,
)
replace_parameter(layer, "w13_scales", marlin_w13_scales)
marlin_w2_scales = marlin_moe_permute_scales(
s=layer.w2_scales,
size_k=layer.w2_scales.shape[1] *
(self.quant_config.group_size if self.quant_config.group_size != -1
else self.quant_config.pack_factor),
size_n=layer.w2_scales.shape[2],
group_size=self.quant_config.group_size,
)
replace_parameter(layer, "w2_scales", marlin_w2_scales)
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool,
use_grouped_topk: bool = False,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
apply_router_weight_on_input: bool = False,
activation: str = "silu",
) -> torch.Tensor:
assert activation == "silu", "Only SiLU activation is supported."
if apply_router_weight_on_input:
raise NotImplementedError(
"Apply router weight on input is not supported for "
"fused Marlin MoE method.")
topk_weights, topk_ids = FusedMoE.select_experts(
hidden_states=x,
router_logits=router_logits,
use_grouped_topk=use_grouped_topk,
top_k=top_k,
renormalize=renormalize,
topk_group=topk_group,
num_expert_group=num_expert_group,
custom_routing_function=custom_routing_function,
scoring_func=scoring_func,
e_score_correction_bias=e_score_correction_bias)
return torch.ops.vllm.fused_marlin_moe(
x,
layer.w13_qweight,
layer.w2_qweight,
layer.w13_scales,
layer.w2_scales,
router_logits,
topk_weights,
topk_ids,
quant_type_id=self.quant_type.id,
global_num_experts=global_num_experts,
expert_map=expert_map,
g_idx1=layer.w13_g_idx,
g_idx2=layer.w2_g_idx,
sort_indices1=layer.w13_g_idx_sort_indices,
sort_indices2=layer.w2_g_idx_sort_indices,
workspace=layer.workspace,
is_k_full=self.is_k_full)
|