File size: 7,780 Bytes
ffd6b68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import os
import argparse
import numpy as np
import tensorflow as tf
from tensorflow.keras.preprocessing import image
from tensorflow.keras.models import load_model
from sklearn.metrics import classification_report, confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import tqdm
# Load and preprocess an image for prediction
def load_and_preprocess_image(img_path, target_size):
"""Load and preprocess the image for prediction."""
img = image.load_img(img_path, target_size=target_size)
img_array = image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0) # Create batch axis
img_array = img_array / 255.0 # Normalize the image
return img_array
# Load all models from a specified directory
def load_all_models(model_dir):
"""Load all models from the specified directory."""
models = {}
for file_name in os.listdir(model_dir):
if file_name.endswith('_model.keras'):
model_path = os.path.join(model_dir, file_name)
model_name = file_name.split('_model.keras')[0] # Extract model name
model = load_model(model_path)
models[model_name] = model
print(f"Model loaded from {model_path}")
if not models:
raise FileNotFoundError(f"No model files found in {model_dir}.")
return models
# Load a single model from a specified path
def load_model_from_file(model_path):
"""Load a single model from the specified path."""
model = load_model(model_path)
print(f"Model loaded from {model_path}")
return model
def make_predictions(model, img_array):
# Make predictions using the loaded model
"""Make predictions using the loaded model."""
predictions = model.predict(img_array)
return predictions
def get_class_names(train_dir):
"""Get class names from training directory."""
class_names = os.listdir(train_dir) # Assuming subfolder names are the class labels
class_names.sort() # Ensure consistent ordering
return class_names
# Compute confusion matrix and classification report, and save to log directory
def compute_confusion_matrix_and_report(true_labels, predicted_labels, class_names, log_dir, model_name):
"""Compute confusion matrix and classification report, and save to log directory."""
# Compute confusion matrix
conf_matrix = confusion_matrix(true_labels, predicted_labels, labels=class_names)
report = classification_report(true_labels, predicted_labels, target_names=class_names)
# Print the classification report
print(f"Model: {model_name}")
print(report)
# Plot the confusion matrix
plt.figure(figsize=(10, 8))
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=class_names, yticklabels=class_names)
plt.xlabel('Predicted Label')
plt.ylabel('True Label')
plt.title(f'Confusion Matrix - {model_name}')
# Save plot
if not os.path.exists(log_dir):
os.makedirs(log_dir)
conf_matrix_plot_file = os.path.join(log_dir, f'confusion_matrix_{model_name}.png')
plt.savefig(conf_matrix_plot_file)
plt.close()
# Save results to log directory
conf_matrix_file = os.path.join(log_dir, f'confusion_matrix_{model_name}.txt')
report_file = os.path.join(log_dir, f'classification_report_{model_name}.txt')
np.savetxt(conf_matrix_file, conf_matrix, fmt='%d', delimiter=',', header=','.join(class_names))
with open(report_file, 'w') as f:
f.write(report)
print(f"Confusion matrix and classification report saved to {log_dir} with model name: {model_name}")
# Main function to load models, make predictions, and evaluate performance
def main(model_path, model_dir, img_path, test_dir, train_dir, log_dir):
# Define target image size based on model requirements
target_size = (224, 224) # Adjust if needed
if model_path:
# Load a single model
model = load_model_from_file(model_path)
models = {os.path.basename(model_path): model}
elif model_dir:
# Load all models from a directory
models = load_all_models(model_dir)
else:
raise ValueError("Either --model_path or --model_dir must be provided.")
# Get class names from train directory
class_names = get_class_names(train_dir)
num_classes = len(class_names)
# If an image path is provided, perform prediction on that image
if img_path:
img_array = load_and_preprocess_image(img_path, target_size)
for model_name, model in models.items():
print(f"Model: {model_name}")
predictions = make_predictions(model, img_array)
predicted_label_index = np.argmax(predictions, axis=1)[0]
if predicted_label_index >= num_classes:
raise ValueError(f"Predicted label index {predicted_label_index} is out of range for class names list.")
predicted_label = class_names[predicted_label_index]
probability_score = predictions[0][predicted_label_index]
print('-'*20)
print(f"Predicted label: {predicted_label}, Probability: {probability_score:.4f}")
print('-'*20)
# If a test directory is provided, perform batch predictions and evaluation
if test_dir:
files = [os.path.join(root, file) for root, _, files in os.walk(test_dir) for file in files if file.endswith(('png', 'jpg', 'jpeg'))]
for model_name, model in models.items():
true_labels = []
predicted_labels = []
for img_path in tqdm(files, desc=f"Processing images with {model_name}"):
img_array = load_and_preprocess_image(img_path, target_size)
predictions = make_predictions(model, img_array)
predicted_label_index = np.argmax(predictions, axis=1)[0]
if predicted_label_index >= num_classes:
raise ValueError(f"Predicted label index {predicted_label_index} is out of range for class names list.")
predicted_label = class_names[predicted_label_index]
true_label = os.path.basename(os.path.dirname(img_path)) # Assuming folder name is the label
if true_label not in class_names:
raise ValueError(f"True label {true_label} is not in class names list.")
true_labels.append(true_label)
predicted_labels.append(predicted_label)
# Compute and save confusion matrix and classification report
compute_confusion_matrix_and_report(true_labels, predicted_labels, class_names, log_dir, model_name)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Load models and make predictions on new images or a test dataset")
parser.add_argument('--model_path', type=str, help='Path to a single saved model')
parser.add_argument('--model_dir', type=str, help='Directory containing saved models (loads all models in the folder)')
parser.add_argument('--img_path', type=str, help='Path to the image to be predicted')
parser.add_argument('--test_dir', type=str, help='Directory containing test dataset for batch predictions')
parser.add_argument('--train_dir', type=str, required=True, help='Directory containing training dataset for inferring class names')
parser.add_argument('--log_dir', type=str, required=True, help='Directory to save prediction results')
args = parser.parse_args()
main(args.model_path, args.model_dir, args.img_path, args.test_dir, args.train_dir, args.log_dir)
|