File size: 12,097 Bytes
ffd6b68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import os
import numpy as np
import tensorflow as tf
from tensorflow.keras.preprocessing.image import img_to_array, array_to_img, load_img
from lime.lime_image import LimeImageExplainer, SegmentationAlgorithm
import matplotlib.pyplot as plt
from PIL import Image
import argparse
import shap
import cv2
import pickle
image_counter = 0
temp_folder = "temp_data"
output_folder = "explanations"
# Load the model and extract relevant details
def load_model_details(model_path):
if model_path.endswith('.keras'):
print("Loading .keras format model...")
model = tf.keras.models.load_model(model_path, compile=False)
elif model_path.endswith('.h5'):
print("Loading .h5 format model...")
model = tf.keras.models.load_model(model_path, compile=False)
else:
print("Loading SavedModel using TFSMLayer...")
model = tf.keras.Sequential([
tf.keras.layers.TFSMLayer(model_path, call_endpoint='serving_default')
])
input_shape = model.input_shape[1:3]
last_conv_layer_name = None
for layer in reversed(model.layers):
if isinstance(layer, tf.keras.layers.Conv2D):
last_conv_layer_name = layer.name
break
print(f"Model loaded with input shape: {input_shape} and last conv layer: {last_conv_layer_name}")
return model, last_conv_layer_name, input_shape
# Load the label encoder based on the training directory
def load_label_encoder(train_directory):
labels = sorted(os.listdir(train_directory))
label_encoder = {i: label for i, label in enumerate(labels)}
print(f"Label encoder created: {label_encoder}")
return label_encoder
def load_and_preprocess_image(filename, image_size):
# Load and preprocess the image for model input
print(f"Loading and preprocessing image from: {filename}")
image = tf.io.read_file(filename)
image = tf.image.decode_image(image, channels=3)
if not tf.executing_eagerly():
image.set_shape([None, None, 3])
image = tf.image.resize(image, [image_size[0], image_size[1]])
image = image / 255.0
image.set_shape([image_size[0], image_size[1], 3])
return image
# Create a dataset from the training directory
def create_dataset(data_dir, labels, image_size, batch_size):
print(f"Creating dataset from directory: {data_dir}")
image_files = []
image_labels = []
for label in labels:
label_dir = os.path.join(data_dir, label)
for image_file in os.listdir(label_dir):
image_files.append(os.path.join(label_dir, image_file))
image_labels.append(label)
label_map = {label: idx for idx, label in enumerate(labels)}
image_labels = [label_map[label] for label in image_labels]
dataset = tf.data.Dataset.from_tensor_slices((image_files, image_labels))
dataset = dataset.map(lambda x, y: (load_and_preprocess_image(x, image_size), y))
dataset = dataset.shuffle(buffer_size=len(image_files))
dataset = dataset.batch(batch_size).prefetch(buffer_size=tf.data.AUTOTUNE)
print("Dataset created and batched")
return dataset
# Save preprocessed data (images and labels) to a file
def save_preprocessed_data(X_train, y_train, file_path):
print(f"Saving preprocessed data to: {file_path}")
with open(file_path, 'wb') as file:
pickle.dump((X_train, y_train), file)
def load_preprocessed_data(file_path):
print(f"Loading preprocessed data from: {file_path}")
with open(file_path, 'rb') as file:
return pickle.load(file)
def make_gradcam_heatmap(img_array, model, last_conv_layer_name, pred_index=None):
# Generate a Grad-CAM heatmap for the given image and model
grad_model = tf.keras.models.Model(
inputs=model.inputs, outputs=[model.get_layer(last_conv_layer_name).output, model.output]
)
with tf.GradientTape() as tape:
last_conv_layer_output, preds = grad_model(img_array)
preds = tf.convert_to_tensor(preds)
class_channel = preds[:, pred_index]
# if pred_index is None:
# pred_index = tf.argmax(preds[0]) # Default to the class with the highest probability
# pred_index = tf.squeeze(pred_index) # Ensure pred_index is a scalar tensor
# if tf.executing_eagerly():
# pred_index = pred_index.numpy() # Convert to a NumPy array
# pred_index = int(pred_index) # Convert to a Python integer
# class_channel = preds[0][pred_index]
grads = tape.gradient(class_channel, last_conv_layer_output)
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
last_conv_layer_output = last_conv_layer_output[0]
heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis]
heatmap = tf.squeeze(heatmap)
heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap)
return heatmap.numpy()
def save_and_display_gradcam(array, heatmap, alpha=0.8):
# Save and display the Grad-CAM heatmap overlaid on the original image
print("Saving and displaying Grad-CAM result...")
heatmap = np.uint8(255 * heatmap)
jet = plt.cm.jet
jet_colors = jet(np.arange(256))[:, :3]
jet_heatmap = jet_colors[heatmap]
jet_heatmap = array_to_img(jet_heatmap)
jet_heatmap = jet_heatmap.resize((array.shape[1], array.shape[0]))
jet_heatmap = img_to_array(jet_heatmap)
superimposed_img = jet_heatmap * alpha + array
superimposed_img = array_to_img(superimposed_img)
return superimposed_img
def generate_splime_mask_top_n(img_array, model, explainer, top_n=1, num_features=100, num_samples=300):
# Generate a SP-LIME mask for the given image and model
# Use superpixel segmentation for SP-LIME
segmentation_fn = SegmentationAlgorithm('quickshift', kernel_size=4, max_dist=200, ratio=0.2)
explanation_instance = explainer.explain_instance(
img_array, model.predict, top_labels=top_n, hide_color=0,
num_samples=num_samples, num_features=num_features, segmentation_fn=segmentation_fn
)
explanation_mask = explanation_instance.get_image_and_mask(
explanation_instance.top_labels[0], positive_only=False,
num_features=num_features, hide_rest=True
)[1]
# Ensure mask is in the same shape as the input image
mask = np.zeros_like(img_array) # Create a mask of the same shape as img_array
mask[explanation_mask == 1] = img_array[explanation_mask == 1] # Overlay highlighted regions
# Set non-highlighted areas to white
mask = np.where(explanation_mask[:, :, np.newaxis] == 1, mask, 1.0)
return mask, explanation_instance
def explain_image_shap(img, model, class_names, top_prediction, max_evals=1000, batch_size=50):
# Generate SHAP explanations for the given image and model
masker = shap.maskers.Image("inpaint_telea", img[0].shape) # Update if necessary
# Define a function to predict probabilities from the model
def f(X):
return model.predict(X)
# Create the SHAP explainer
explainer = shap.Explainer(f, masker, output_names=class_names)
# Get SHAP values
shap_values = explainer(img, max_evals=max_evals, batch_size=batch_size, outputs=shap.Explanation.argsort.flip[:1])
return shap_values
def classify_image_and_explain(image_path, model_path, train_directory, num_samples, num_features, segmentation_alg, kernel_size, max_dist, ratio, max_evals, batch_size, explainer_types, output_folder):
# Main function to classify the image and generate explanations
global image_counter
if output_folder is None:
output_folder = "explanations"
if not os.path.exists(output_folder):
os.makedirs(output_folder)
model, last_conv_layer_name, input_shape = load_model_details(model_path)
label_encoder = load_label_encoder(train_directory)
labels = list(label_encoder.values())
# Load the image
image = load_img(image_path, target_size=input_shape)
if image.mode != 'RGB':
image = image.convert('RGB')
array = img_to_array(image)
img_array = array / 255.0
img_array = np.expand_dims(img_array, axis=0)
# Predict the class of the image
predictions = model.predict(img_array)
top_prediction = np.argmax(predictions[0])
top_label = label_encoder[top_prediction]
print(f"Prediction: {top_label} with probability {predictions[0][top_prediction]:.4f}")
# Generate explanations based on user-specified types
if 'gradcam' in explainer_types:
model.layers[-1].activation = None
heatmap = make_gradcam_heatmap(img_array, model, last_conv_layer_name)
gradcam_image = save_and_display_gradcam(img_to_array(image), heatmap)
gradcam_image.save(os.path.join(output_folder, f"gradcam_{image_counter}.png"))
if 'lime' in explainer_types:
# SPLIME Explanation
explainer = LimeImageExplainer()
splime_mask, explanation_instance = generate_splime_mask_top_n(img_array[0], model, explainer, top_n=1, num_features=num_features, num_samples=num_samples)
# Ensure splime_mask is in [0, 1] range before saving
splime_mask = np.clip(splime_mask, 0, 1)
plt.imsave(os.path.join(output_folder, f"splime_{image_counter}.png"), splime_mask)
if 'shap' in explainer_types:
custom_image = img_to_array(image) / 255.0 # Preprocess image for SHAP
shap_values = explain_image_shap(custom_image.reshape(1, *custom_image.shape), model, labels, top_prediction, max_evals=max_evals, batch_size=batch_size)
shap.image_plot(shap_values[0], custom_image, labels=[top_label], show=False)
plt.savefig(os.path.join(output_folder, f"shap_{image_counter}.png"))
#plt.show()
plt.close()
print("Image classification and explanation process completed.")
image_counter += 1
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Image classification and explanation script")
parser.add_argument("--image_path", type=str, required=True, help="Path to the input image")
parser.add_argument("--model_path", type=str, required=True, help="Path to the trained model")
parser.add_argument("--train_directory", type=str, required=True, help="Directory containing training images")
parser.add_argument("--num_samples", type=int, default=300, help="Number of samples for LIME")
parser.add_argument("--num_features", type=int, default=100, help="Number of features for LIME")
parser.add_argument("--segmentation_alg", type=str, default='quickshift', help="Segmentation algorithm for LIME (options: quickshift, slic)")
parser.add_argument("--kernel_size", type=int, default=4, help="Kernel size for segmentation algorithm")
parser.add_argument("--max_dist", type=int, default=200, help="Max distance for segmentation algorithm")
parser.add_argument("--ratio", type=float, default=0.2, help="Ratio for segmentation algorithm")
parser.add_argument("--max_evals", type=int, default=400, help="Maximum evaluations for SHAP")
parser.add_argument("--batch_size", type=int, default=50, help="Batch size for SHAP")
parser.add_argument("--explainer_types", type=str, default='all', help="Comma-separated list of explainers to use (options: lime, shap, gradcam). Use 'all' to include all three.")
parser.add_argument("--output_folder", type=str, default=None, help="Output folder for explanations")
args = parser.parse_args()
explainer_types = args.explainer_types.split(',') if args.explainer_types != 'all' else ['lime', 'shap', 'gradcam']
classify_image_and_explain(
args.image_path, args.model_path, args.train_directory, args.num_samples,
args.num_features, args.segmentation_alg, args.kernel_size, args.max_dist,
args.ratio, args.max_evals, args.batch_size, explainer_types, args.output_folder
)
|