File size: 12,097 Bytes
ffd6b68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import os
import numpy as np
import tensorflow as tf
from tensorflow.keras.preprocessing.image import img_to_array, array_to_img, load_img
from lime.lime_image import LimeImageExplainer, SegmentationAlgorithm
import matplotlib.pyplot as plt
from PIL import Image
import argparse
import shap
import cv2
import pickle

image_counter = 0
temp_folder = "temp_data"
output_folder = "explanations"

# Load the model and extract relevant details
def load_model_details(model_path):
    if model_path.endswith('.keras'):
        print("Loading .keras format model...")
        model = tf.keras.models.load_model(model_path, compile=False)
    elif model_path.endswith('.h5'):
        print("Loading .h5 format model...")
        model = tf.keras.models.load_model(model_path, compile=False)
    else:
        print("Loading SavedModel using TFSMLayer...")
        model = tf.keras.Sequential([
            tf.keras.layers.TFSMLayer(model_path, call_endpoint='serving_default')
        ])

    input_shape = model.input_shape[1:3]
    last_conv_layer_name = None
    for layer in reversed(model.layers):
        if isinstance(layer, tf.keras.layers.Conv2D):
            last_conv_layer_name = layer.name
            break

    print(f"Model loaded with input shape: {input_shape} and last conv layer: {last_conv_layer_name}")
    return model, last_conv_layer_name, input_shape

# Load the label encoder based on the training directory
def load_label_encoder(train_directory):
    labels = sorted(os.listdir(train_directory))
    label_encoder = {i: label for i, label in enumerate(labels)}
    print(f"Label encoder created: {label_encoder}")
    return label_encoder

def load_and_preprocess_image(filename, image_size):
    # Load and preprocess the image for model input
    print(f"Loading and preprocessing image from: {filename}")
    image = tf.io.read_file(filename)
    image = tf.image.decode_image(image, channels=3)
    
    if not tf.executing_eagerly():
        image.set_shape([None, None, 3])

    image = tf.image.resize(image, [image_size[0], image_size[1]])
    image = image / 255.0
    image.set_shape([image_size[0], image_size[1], 3])

    return image

# Create a dataset from the training directory
def create_dataset(data_dir, labels, image_size, batch_size):
    print(f"Creating dataset from directory: {data_dir}")
    image_files = []
    image_labels = []

    for label in labels:
        label_dir = os.path.join(data_dir, label)
        for image_file in os.listdir(label_dir):
            image_files.append(os.path.join(label_dir, image_file))
            image_labels.append(label)

    label_map = {label: idx for idx, label in enumerate(labels)}
    image_labels = [label_map[label] for label in image_labels]

    dataset = tf.data.Dataset.from_tensor_slices((image_files, image_labels))
    dataset = dataset.map(lambda x, y: (load_and_preprocess_image(x, image_size), y))
    dataset = dataset.shuffle(buffer_size=len(image_files))
    dataset = dataset.batch(batch_size).prefetch(buffer_size=tf.data.AUTOTUNE)

    print("Dataset created and batched")
    return dataset

# Save preprocessed data (images and labels) to a file
def save_preprocessed_data(X_train, y_train, file_path):
    print(f"Saving preprocessed data to: {file_path}")
    with open(file_path, 'wb') as file:
        pickle.dump((X_train, y_train), file)


def load_preprocessed_data(file_path):
    print(f"Loading preprocessed data from: {file_path}")
    with open(file_path, 'rb') as file:
        return pickle.load(file)

def make_gradcam_heatmap(img_array, model, last_conv_layer_name, pred_index=None):
    # Generate a Grad-CAM heatmap for the given image and model
    
    grad_model = tf.keras.models.Model(
        inputs=model.inputs, outputs=[model.get_layer(last_conv_layer_name).output, model.output]
    )
    with tf.GradientTape() as tape:
        last_conv_layer_output, preds = grad_model(img_array)
        preds = tf.convert_to_tensor(preds)
        class_channel = preds[:, pred_index]
        # if pred_index is None:
        #     pred_index = tf.argmax(preds[0])  # Default to the class with the highest probability
        # pred_index = tf.squeeze(pred_index)  # Ensure pred_index is a scalar tensor
        # if tf.executing_eagerly():
        #     pred_index = pred_index.numpy()  # Convert to a NumPy array
        # pred_index = int(pred_index)  # Convert to a Python integer
        # class_channel = preds[0][pred_index]
    
    grads = tape.gradient(class_channel, last_conv_layer_output)
    pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
    last_conv_layer_output = last_conv_layer_output[0]
    heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis]
    heatmap = tf.squeeze(heatmap)
    heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap)
    return heatmap.numpy()

def save_and_display_gradcam(array, heatmap, alpha=0.8):
    # Save and display the Grad-CAM heatmap overlaid on the original image
    print("Saving and displaying Grad-CAM result...")
    heatmap = np.uint8(255 * heatmap)
    jet = plt.cm.jet
    jet_colors = jet(np.arange(256))[:, :3]
    jet_heatmap = jet_colors[heatmap]
    jet_heatmap = array_to_img(jet_heatmap)
    jet_heatmap = jet_heatmap.resize((array.shape[1], array.shape[0]))
    jet_heatmap = img_to_array(jet_heatmap)
    superimposed_img = jet_heatmap * alpha + array
    superimposed_img = array_to_img(superimposed_img)
    return superimposed_img

def generate_splime_mask_top_n(img_array, model, explainer, top_n=1, num_features=100, num_samples=300):
    # Generate a SP-LIME mask for the given image and model
    # Use superpixel segmentation for SP-LIME
    segmentation_fn = SegmentationAlgorithm('quickshift', kernel_size=4, max_dist=200, ratio=0.2)

    explanation_instance = explainer.explain_instance(
        img_array, model.predict, top_labels=top_n, hide_color=0,
        num_samples=num_samples, num_features=num_features, segmentation_fn=segmentation_fn
    )
    explanation_mask = explanation_instance.get_image_and_mask(
        explanation_instance.top_labels[0], positive_only=False,
        num_features=num_features, hide_rest=True
    )[1]

    # Ensure mask is in the same shape as the input image
    mask = np.zeros_like(img_array)  # Create a mask of the same shape as img_array
    mask[explanation_mask == 1] = img_array[explanation_mask == 1]  # Overlay highlighted regions
    
    # Set non-highlighted areas to white
    mask = np.where(explanation_mask[:, :, np.newaxis] == 1, mask, 1.0)
    
    return mask, explanation_instance


def explain_image_shap(img, model, class_names, top_prediction, max_evals=1000, batch_size=50):
    # Generate SHAP explanations for the given image and model
    masker = shap.maskers.Image("inpaint_telea", img[0].shape)  # Update if necessary

    # Define a function to predict probabilities from the model
    def f(X):
        return model.predict(X)

    # Create the SHAP explainer
    explainer = shap.Explainer(f, masker, output_names=class_names)

    # Get SHAP values
    shap_values = explainer(img, max_evals=max_evals, batch_size=batch_size, outputs=shap.Explanation.argsort.flip[:1])

    return shap_values

def classify_image_and_explain(image_path, model_path, train_directory, num_samples, num_features, segmentation_alg, kernel_size, max_dist, ratio, max_evals, batch_size, explainer_types, output_folder):
    # Main function to classify the image and generate explanations
    global image_counter

    if output_folder is None:
        output_folder = "explanations"
    if not os.path.exists(output_folder):
        os.makedirs(output_folder)
    
    model, last_conv_layer_name, input_shape = load_model_details(model_path)
    label_encoder = load_label_encoder(train_directory)
    labels = list(label_encoder.values())
    
    # Load the image
    image = load_img(image_path, target_size=input_shape)
    if image.mode != 'RGB':
        image = image.convert('RGB')
    array = img_to_array(image)
    img_array = array / 255.0
    img_array = np.expand_dims(img_array, axis=0)
    
    # Predict the class of the image
    predictions = model.predict(img_array)
    top_prediction = np.argmax(predictions[0])
    top_label = label_encoder[top_prediction]
    
    print(f"Prediction: {top_label} with probability {predictions[0][top_prediction]:.4f}")

    # Generate explanations based on user-specified types
    if 'gradcam' in explainer_types:
        model.layers[-1].activation = None
        heatmap = make_gradcam_heatmap(img_array, model, last_conv_layer_name)
        gradcam_image = save_and_display_gradcam(img_to_array(image), heatmap)
        gradcam_image.save(os.path.join(output_folder, f"gradcam_{image_counter}.png"))
        
    if 'lime' in explainer_types:
        # SPLIME Explanation
        explainer = LimeImageExplainer()
        splime_mask, explanation_instance = generate_splime_mask_top_n(img_array[0], model, explainer, top_n=1, num_features=num_features, num_samples=num_samples)
        # Ensure splime_mask is in [0, 1] range before saving
        splime_mask = np.clip(splime_mask, 0, 1)
        plt.imsave(os.path.join(output_folder, f"splime_{image_counter}.png"), splime_mask)

    if 'shap' in explainer_types:
        custom_image = img_to_array(image) / 255.0  # Preprocess image for SHAP
        shap_values = explain_image_shap(custom_image.reshape(1, *custom_image.shape), model, labels, top_prediction, max_evals=max_evals, batch_size=batch_size)
        shap.image_plot(shap_values[0], custom_image, labels=[top_label], show=False)
        plt.savefig(os.path.join(output_folder, f"shap_{image_counter}.png"))
        #plt.show()
        plt.close()
    
    print("Image classification and explanation process completed.")
    image_counter += 1

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Image classification and explanation script")
    parser.add_argument("--image_path", type=str, required=True, help="Path to the input image")
    parser.add_argument("--model_path", type=str, required=True, help="Path to the trained model")
    parser.add_argument("--train_directory", type=str, required=True, help="Directory containing training images")
    parser.add_argument("--num_samples", type=int, default=300, help="Number of samples for LIME")
    parser.add_argument("--num_features", type=int, default=100, help="Number of features for LIME")
    parser.add_argument("--segmentation_alg", type=str, default='quickshift', help="Segmentation algorithm for LIME (options: quickshift, slic)")
    parser.add_argument("--kernel_size", type=int, default=4, help="Kernel size for segmentation algorithm")
    parser.add_argument("--max_dist", type=int, default=200, help="Max distance for segmentation algorithm")
    parser.add_argument("--ratio", type=float, default=0.2, help="Ratio for segmentation algorithm")
    parser.add_argument("--max_evals", type=int, default=400, help="Maximum evaluations for SHAP")
    parser.add_argument("--batch_size", type=int, default=50, help="Batch size for SHAP")
    parser.add_argument("--explainer_types", type=str, default='all', help="Comma-separated list of explainers to use (options: lime, shap, gradcam). Use 'all' to include all three.")
    parser.add_argument("--output_folder", type=str, default=None, help="Output folder for explanations")

    args = parser.parse_args()
    
    explainer_types = args.explainer_types.split(',') if args.explainer_types != 'all' else ['lime', 'shap', 'gradcam']

    classify_image_and_explain(
        args.image_path, args.model_path, args.train_directory, args.num_samples,
        args.num_features, args.segmentation_alg, args.kernel_size, args.max_dist,
        args.ratio, args.max_evals, args.batch_size, explainer_types, args.output_folder
    )