michaelgathara commited on
Commit
6bc1e8d
verified
1 Parent(s): 868169f

Upload model files

Browse files
Files changed (5) hide show
  1. README.md +50 -3
  2. config.json +16 -0
  3. pytorch_model.bin +3 -0
  4. tokenizer_config.json +7 -0
  5. upload_instructions.md +45 -0
README.md CHANGED
@@ -1,3 +1,50 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: mit
4
+ tags:
5
+ - pytorch
6
+ - causal-lm
7
+ - language-model
8
+ - flash-attention
9
+ ---
10
+
11
+ # PurelyUnfunctionalAI/GibberishGPT
12
+
13
+ This is a language model trained with Flash Attention. The model is based on a decoder-only transformer architecture.
14
+
15
+ ## Model Details
16
+
17
+ - **Model Type:** Causal Language Model
18
+ - **Embedding Size:** 512
19
+ - **Hidden Layers:** 8
20
+ - **Attention Heads:** 8
21
+ - **Context Length:** 512
22
+ - **Flash Attention:** Enabled
23
+
24
+ ## Usage
25
+
26
+ ```python
27
+ import tiktoken
28
+ from transformers import AutoModelForCausalLM
29
+
30
+ # Load the tokenizer
31
+ tokenizer = tiktoken.get_encoding("gpt2")
32
+
33
+ # Load the model
34
+ model = AutoModelForCausalLM.from_pretrained("PurelyUnfunctionalAI/GibberishGPT")
35
+
36
+ # Encode input
37
+ input_text = "Your prompt here"
38
+ input_ids = tokenizer.encode(input_text)
39
+ input_tensor = torch.tensor([input_ids], dtype=torch.long)
40
+
41
+ # Generate
42
+ output = model.generate(input_tensor, max_length=100)
43
+ generated_text = tokenizer.decode(output[0].tolist())
44
+ print(generated_text)
45
+ ```
46
+
47
+ ## License
48
+
49
+ This model is available under the MIT License.
50
+
config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "FlashAttentionForCausalLM"
4
+ ],
5
+ "model_type": "flash_attention_lm",
6
+ "vocab_size": 50257,
7
+ "hidden_size": 512,
8
+ "num_hidden_layers": 8,
9
+ "num_attention_heads": 8,
10
+ "max_position_embeddings": 512,
11
+ "hidden_dropout_prob": 0.1,
12
+ "use_flash_attention": true,
13
+ "gradient_checkpointing": false,
14
+ "torch_dtype": "float32",
15
+ "transformers_version": "4.40.0"
16
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19e152e0a66e16497d403c629527601af9f5990fa21fc1c63d259ab041880be8
3
+ size 408803874
tokenizer_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "tiktoken",
3
+ "tokenizer_class": "TiktokenTokenizer",
4
+ "bos_token": "<|endoftext|>",
5
+ "eos_token": "<|endoftext|>",
6
+ "unk_token": "<|endoftext|>"
7
+ }
upload_instructions.md ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Upload to Hugging Face Hub
2
+
3
+ To upload your model to the Hugging Face Hub, you can use the Hugging Face CLI:
4
+
5
+ ## 1. Install the Hugging Face Hub CLI
6
+ ```bash
7
+ pip install huggingface_hub
8
+ ```
9
+
10
+ ## 2. Login to Hugging Face
11
+ ```bash
12
+ huggingface-cli login
13
+ ```
14
+
15
+ ## 3. Create a new repository
16
+ Go to https://huggingface.co/new and create a new model repository.
17
+
18
+ ## 4. Upload your model
19
+ ```bash
20
+ cd ./published_model/hf_model
21
+ git init
22
+ git add .
23
+ git commit -m "Initial model upload"
24
+ git remote add origin https://huggingface.co/PurelyUnfunctionalAI/GibberishGPT
25
+ git push -u origin main
26
+ ```
27
+
28
+ Alternatively, you can use the Python API:
29
+
30
+ ```python
31
+ from huggingface_hub import HfApi
32
+ api = HfApi()
33
+
34
+ # Login to Hugging Face
35
+ api.login()
36
+
37
+ # Upload model files
38
+ api.create_repo(repo_id="PurelyUnfunctionalAI/GibberishGPT", repo_type="model", exist_ok=True)
39
+ api.upload_folder(
40
+ folder_path="./published_model/hf_model",
41
+ repo_id="PurelyUnfunctionalAI/GibberishGPT",
42
+ commit_message="Upload model"
43
+ )
44
+ ```
45
+