File size: 2,538 Bytes
440a65f e953573 440a65f e953573 440a65f e953573 440a65f e953573 440a65f e953573 440a65f e953573 440a65f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
library_name: transformers
tags:
- pruna-ai
---
# Model Card for PrunaAI/test-save-tiny-random-llama4-smashed
This model was created using the [pruna](https://github.com/PrunaAI/pruna) library. Pruna is a model optimization framework built for developers, enabling you to deliver more efficient models with minimal implementation overhead.
## Usage
First things first, you need to install the pruna library:
```bash
pip install pruna
```
You can [use the transformers library to load the model](https://huggingface.co/PrunaAI/test-save-tiny-random-llama4-smashed?library=transformers) but this might not include all optimizations by default.
To ensure that all optimizations are applied, use the pruna library to load the model using the following code:
```python
from pruna import PrunaModel
loaded_model = PrunaModel.from_hub(
"PrunaAI/test-save-tiny-random-llama4-smashed"
)
```
After loading the model, you can use the inference methods of the original model. Take a look at the [documentation](https://pruna.readthedocs.io/en/latest/index.html) for more usage information.
## Smash Configuration
The compression configuration of the model is stored in the `smash_config.json` file, which describes the optimization methods that were applied to the model.
```bash
{
"batcher": null,
"cacher": null,
"compiler": null,
"distiller": null,
"enhancer": null,
"factorizer": null,
"pruner": null,
"quantizer": null,
"recoverer": null,
"batch_size": 1,
"device": "cpu",
"save_fns": [],
"load_fns": [
"transformers"
],
"reapply_after_load": {
"factorizer": null,
"pruner": null,
"quantizer": null,
"distiller": null,
"cacher": null,
"recoverer": null,
"compiler": null,
"batcher": null,
"enhancer": null
}
}
```
## 🌍 Join the Pruna AI community!
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.com/invite/rskEr4BZJx)
[](https://www.reddit.com/r/PrunaAI/) |