File size: 2,538 Bytes
440a65f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e953573
 
 
440a65f
 
e953573
440a65f
 
 
 
 
 
 
e953573
440a65f
 
e953573
440a65f
e953573
440a65f
e953573
 
440a65f
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
library_name: transformers
tags:
- pruna-ai
---

# Model Card for PrunaAI/test-save-tiny-random-llama4-smashed

This model was created using the [pruna](https://github.com/PrunaAI/pruna) library. Pruna is a model optimization framework built for developers, enabling you to deliver more efficient models with minimal implementation overhead.

## Usage

First things first, you need to install the pruna library:

```bash
pip install pruna
```

You can [use the transformers library to load the model](https://huggingface.co/PrunaAI/test-save-tiny-random-llama4-smashed?library=transformers) but this might not include all optimizations by default.

To ensure that all optimizations are applied, use the pruna library to load the model using the following code:

```python
from pruna import PrunaModel

loaded_model = PrunaModel.from_hub(
    "PrunaAI/test-save-tiny-random-llama4-smashed"
)
```

After loading the model, you can use the inference methods of the original model. Take a look at the [documentation](https://pruna.readthedocs.io/en/latest/index.html) for more usage information.

## Smash Configuration

The compression configuration of the model is stored in the `smash_config.json` file, which describes the optimization methods that were applied to the model.

```bash
{
    "batcher": null,
    "cacher": null,
    "compiler": null,
    "distiller": null,
    "enhancer": null,
    "factorizer": null,
    "pruner": null,
    "quantizer": null,
    "recoverer": null,
    "batch_size": 1,
    "device": "cpu",
    "save_fns": [],
    "load_fns": [
        "transformers"
    ],
    "reapply_after_load": {
        "factorizer": null,
        "pruner": null,
        "quantizer": null,
        "distiller": null,
        "cacher": null,
        "recoverer": null,
        "compiler": null,
        "batcher": null,
        "enhancer": null
    }
}
```

## 🌍 Join the Pruna AI community!

[![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI)
[![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI)
[![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.com/invite/rskEr4BZJx)
[![Reddit](https://img.shields.io/reddit/subreddit-subscribers/PrunaAI?style=social)](https://www.reddit.com/r/PrunaAI/)