--- language: - en base_model: - openai/clip-vit-large-patch14 tags: - emotion_prediction - VEA - computer_vision - perceptual_tasks - CLIP - EmoSet --- PreceptCLIP-Emotions is a model designed to predict the emotions that an image evokes in users. This is the official model from the paper ["Don't Judge Before You CLIP: A Unified Approach for Perceptual Tasks"](https://arxiv.org/abs/2503.13260). We apply LoRA adaptation on the CLIP visual encoder with an additional MLP head. Our model *achieves state-of-the-art results*. ## Training Details - *Dataset*: [EmoSet](https://vcc.tech/EmoSet) - *Architecture*: CLIP Vision Encoder (ViT-L/14) with *LoRA adaptation* - *Loss Function*: Cross Entropy Loss - *Optimizer*: AdamW - *Learning Rate*: 0.0001 - *Batch Size*: 32 ## Requirements - python=3.9.15 - cudatoolkit=11.7 - torchvision=0.14.0 - transformers=4.45.2 - peft=0.14.0 ## Usage To use the model for inference: ```python from torchvision import transforms import torch from PIL import Image from huggingface_hub import hf_hub_download device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load model model_path = hf_hub_download(repo_id="PerceptCLIP/PerceptCLIP_Emotions", filename="perceptCLIP_Emotions.pth") model = torch.load(model_path).to(device).eval() # Emotion label mapping idx2label = { 0: "amusement", 1: "awe", 2: "contentment", 3: "excitement", 4: "anger", 5: "disgust", 6: "fear", 7: "sadness" } # Preprocessing function def emo_preprocess(): transform = transforms.Compose([ transforms.Resize(224), transforms.CenterCrop(size=(224, 224)), transforms.ToTensor(), transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)), ]) return transform # Load an image image = Image.open("image_path.jpg").convert("RGB") image = emo_preprocess()(image).unsqueeze(0).to(device) # Run inference with torch.no_grad(): outputs = model(image) _, predicted = outputs.max(1) # Get the class index # Get emotion label predicted_emotion = idx2label[predicted.item()] print(f"Predicted Emotion: {predicted_emotion}")