--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: bert-base-uncased-finetuned-sql-classification-with_questionV2 results: [] --- # bert-base-uncased-finetuned-sql-classification-with_questionV2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4672 - Accuracy: 0.9050 - F1: 0.9172 - Precision: 0.8744 - Recall: 0.9645 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.5044 | 1.0 | 645 | 0.4149 | 0.8376 | 0.8617 | 0.8046 | 0.9275 | | 0.3823 | 2.0 | 1290 | 0.3644 | 0.8535 | 0.8797 | 0.7965 | 0.9822 | | 0.3289 | 3.0 | 1935 | 0.2915 | 0.8857 | 0.8998 | 0.8620 | 0.9410 | | 0.2576 | 4.0 | 2580 | 0.3151 | 0.8860 | 0.9004 | 0.8602 | 0.9446 | | 0.2224 | 5.0 | 3225 | 0.3157 | 0.9039 | 0.9155 | 0.8795 | 0.9545 | | 0.1899 | 6.0 | 3870 | 0.3412 | 0.9016 | 0.9140 | 0.8731 | 0.9588 | | 0.165 | 7.0 | 4515 | 0.3729 | 0.8973 | 0.9116 | 0.8591 | 0.9709 | | 0.1265 | 8.0 | 5160 | 0.4119 | 0.9035 | 0.9162 | 0.8702 | 0.9673 | | 0.1162 | 9.0 | 5805 | 0.4244 | 0.9066 | 0.9184 | 0.8766 | 0.9645 | | 0.0995 | 10.0 | 6450 | 0.4672 | 0.9050 | 0.9172 | 0.8744 | 0.9645 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2