OwLim commited on
Commit
0a1aa05
·
verified ·
1 Parent(s): 31ef076

finetune on 10000-20000

Browse files
Files changed (1) hide show
  1. README.md +15 -15
README.md CHANGED
@@ -23,7 +23,7 @@ model-index:
23
  metrics:
24
  - name: Wer
25
  type: wer
26
- value: 21.4960058097313
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -33,8 +33,8 @@ should probably proofread and complete it, then remove this comment. -->
33
 
34
  This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the SLR Javanenese 41_35 dataset.
35
  It achieves the following results on the evaluation set:
36
- - Loss: 0.2504
37
- - Wer: 21.4960
38
 
39
  ## Model description
40
 
@@ -65,18 +65,18 @@ The following hyperparameters were used during training:
65
 
66
  ### Training results
67
 
68
- | Training Loss | Epoch | Step | Validation Loss | Wer |
69
- |:-------------:|:------:|:----:|:---------------:|:-------:|
70
- | 0.066 | 0.3003 | 100 | 0.2901 | 25.6596 |
71
- | 0.0693 | 0.6006 | 200 | 0.2879 | 24.0620 |
72
- | 0.0775 | 0.9009 | 300 | 0.2810 | 23.2147 |
73
- | 0.0331 | 1.2012 | 400 | 0.2727 | 23.7231 |
74
- | 0.0306 | 1.5015 | 500 | 0.2661 | 21.9075 |
75
- | 0.0352 | 1.8018 | 600 | 0.2570 | 20.8908 |
76
- | 0.0122 | 2.1021 | 700 | 0.2608 | 21.8833 |
77
- | 0.0113 | 2.4024 | 800 | 0.2552 | 21.4234 |
78
- | 0.0112 | 2.7027 | 900 | 0.2509 | 21.5686 |
79
- | 0.0115 | 3.0030 | 1000 | 0.2504 | 21.4960 |
80
 
81
 
82
  ### Framework versions
 
23
  metrics:
24
  - name: Wer
25
  type: wer
26
+ value: 29.24663420223432
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
33
 
34
  This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the SLR Javanenese 41_35 dataset.
35
  It achieves the following results on the evaluation set:
36
+ - Loss: 0.4200
37
+ - Wer: 29.2466
38
 
39
  ## Model description
40
 
 
65
 
66
  ### Training results
67
 
68
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
69
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|
70
+ | 0.4922 | 0.16 | 100 | 0.6047 | 37.4678 |
71
+ | 0.435 | 0.32 | 200 | 0.5572 | 35.9424 |
72
+ | 0.5688 | 0.48 | 300 | 0.5090 | 33.5649 |
73
+ | 0.4779 | 0.64 | 400 | 0.4799 | 31.8390 |
74
+ | 0.4247 | 0.8 | 500 | 0.4540 | 30.8364 |
75
+ | 0.42 | 0.96 | 600 | 0.4368 | 30.2492 |
76
+ | 0.2276 | 1.12 | 700 | 0.4330 | 29.6333 |
77
+ | 0.2137 | 1.28 | 800 | 0.4264 | 29.5832 |
78
+ | 0.236 | 1.44 | 900 | 0.4215 | 29.2395 |
79
+ | 0.1971 | 1.6 | 1000 | 0.4200 | 29.2466 |
80
 
81
 
82
  ### Framework versions