amokrov commited on
Commit
5fb9a62
·
verified ·
1 Parent(s): e81cd7e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -3
README.md CHANGED
@@ -46,6 +46,7 @@ pip install optimum[openvino]
46
  2. Run model inference:
47
 
48
  ```
 
49
  from transformers import AutoProcessor
50
  from optimum.intel.openvino import OVModelForSpeechSeq2Seq
51
 
@@ -56,14 +57,14 @@ model = OVModelForSpeechSeq2Seq.from_pretrained(model_id)
56
  dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
57
  sample = dataset[0]
58
 
59
- input_features = processor(
60
  sample["audio"]["array"],
61
  sampling_rate=sample["audio"]["sampling_rate"],
62
  return_tensors="pt",
63
  ).input_features
64
 
65
  outputs = model.generate(input_features)
66
- text = processor.batch_decode(outputs)[0]
67
  print(text)
68
  ```
69
 
@@ -97,7 +98,7 @@ device = "CPU"
97
  pipe = ov_genai.WhisperPipeline(model_path, device)
98
 
99
  dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
100
- sample = dataset[0]["audio]["array"]
101
  print(pipe.generate(sample))
102
  ```
103
 
 
46
  2. Run model inference:
47
 
48
  ```
49
+ from datasets import load_dataset
50
  from transformers import AutoProcessor
51
  from optimum.intel.openvino import OVModelForSpeechSeq2Seq
52
 
 
57
  dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
58
  sample = dataset[0]
59
 
60
+ input_features = tokenizer(
61
  sample["audio"]["array"],
62
  sampling_rate=sample["audio"]["sampling_rate"],
63
  return_tensors="pt",
64
  ).input_features
65
 
66
  outputs = model.generate(input_features)
67
+ text = tokenizer.batch_decode(outputs)[0]
68
  print(text)
69
  ```
70
 
 
98
  pipe = ov_genai.WhisperPipeline(model_path, device)
99
 
100
  dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
101
+ sample = dataset[0]["audio"]["array"]
102
  print(pipe.generate(sample))
103
  ```
104