amokrov commited on
Commit
94030aa
·
verified ·
1 Parent(s): bb7e1fb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -3
README.md CHANGED
@@ -47,6 +47,7 @@ pip install optimum[openvino]
47
  2. Run model inference:
48
 
49
  ```
 
50
  from transformers import AutoProcessor
51
  from optimum.intel.openvino import OVModelForSpeechSeq2Seq
52
 
@@ -57,14 +58,14 @@ model = OVModelForSpeechSeq2Seq.from_pretrained(model_id)
57
  dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
58
  sample = dataset[0]
59
 
60
- input_features = processor(
61
  sample["audio"]["array"],
62
  sampling_rate=sample["audio"]["sampling_rate"],
63
  return_tensors="pt",
64
  ).input_features
65
 
66
  outputs = model.generate(input_features)
67
- text = processor.batch_decode(outputs)[0]
68
  print(text)
69
  ```
70
 
@@ -98,7 +99,7 @@ device = "CPU"
98
  pipe = ov_genai.WhisperPipeline(model_path, device)
99
 
100
  dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
101
- sample = dataset[0]["audio]["array"]
102
  print(pipe.generate(sample))
103
  ```
104
 
 
47
  2. Run model inference:
48
 
49
  ```
50
+ from datasets import load_dataset
51
  from transformers import AutoProcessor
52
  from optimum.intel.openvino import OVModelForSpeechSeq2Seq
53
 
 
58
  dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
59
  sample = dataset[0]
60
 
61
+ input_features = tokenizer(
62
  sample["audio"]["array"],
63
  sampling_rate=sample["audio"]["sampling_rate"],
64
  return_tensors="pt",
65
  ).input_features
66
 
67
  outputs = model.generate(input_features)
68
+ text = tokenizer.batch_decode(outputs)[0]
69
  print(text)
70
  ```
71
 
 
99
  pipe = ov_genai.WhisperPipeline(model_path, device)
100
 
101
  dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
102
+ sample = dataset[0]["audio"]["array"]
103
  print(pipe.generate(sample))
104
  ```
105