Upload folder using huggingface_hub
Browse files- .ipynb_checkpoints/README-checkpoint.md +217 -0
- README.md +119 -12
- config.json +2 -2
- generation_config.json +1 -1
- openvino_decoder_model.bin +2 -2
- openvino_decoder_model.xml +0 -0
- openvino_detokenizer.bin +2 -2
- openvino_detokenizer.xml +102 -66
- openvino_encoder_model.bin +1 -1
- openvino_encoder_model.xml +0 -0
- openvino_tokenizer.bin +2 -2
- openvino_tokenizer.xml +211 -225
- preprocessor_config.json +1 -0
- tokenizer_config.json +1 -0
.ipynb_checkpoints/README-checkpoint.md
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- zh
|
5 |
+
- de
|
6 |
+
- es
|
7 |
+
- ru
|
8 |
+
- ko
|
9 |
+
- fr
|
10 |
+
- ja
|
11 |
+
- pt
|
12 |
+
- tr
|
13 |
+
- pl
|
14 |
+
- ca
|
15 |
+
- nl
|
16 |
+
- ar
|
17 |
+
- sv
|
18 |
+
- it
|
19 |
+
- id
|
20 |
+
- hi
|
21 |
+
- fi
|
22 |
+
- vi
|
23 |
+
- he
|
24 |
+
- uk
|
25 |
+
- el
|
26 |
+
- ms
|
27 |
+
- cs
|
28 |
+
- ro
|
29 |
+
- da
|
30 |
+
- hu
|
31 |
+
- ta
|
32 |
+
- no
|
33 |
+
- th
|
34 |
+
- ur
|
35 |
+
- hr
|
36 |
+
- bg
|
37 |
+
- lt
|
38 |
+
- la
|
39 |
+
- mi
|
40 |
+
- ml
|
41 |
+
- cy
|
42 |
+
- sk
|
43 |
+
- te
|
44 |
+
- fa
|
45 |
+
- lv
|
46 |
+
- bn
|
47 |
+
- sr
|
48 |
+
- az
|
49 |
+
- sl
|
50 |
+
- kn
|
51 |
+
- et
|
52 |
+
- mk
|
53 |
+
- br
|
54 |
+
- eu
|
55 |
+
- is
|
56 |
+
- hy
|
57 |
+
- ne
|
58 |
+
- mn
|
59 |
+
- bs
|
60 |
+
- kk
|
61 |
+
- sq
|
62 |
+
- sw
|
63 |
+
- gl
|
64 |
+
- mr
|
65 |
+
- pa
|
66 |
+
- si
|
67 |
+
- km
|
68 |
+
- sn
|
69 |
+
- yo
|
70 |
+
- so
|
71 |
+
- af
|
72 |
+
- oc
|
73 |
+
- ka
|
74 |
+
- be
|
75 |
+
- tg
|
76 |
+
- sd
|
77 |
+
- gu
|
78 |
+
- am
|
79 |
+
- yi
|
80 |
+
- lo
|
81 |
+
- uz
|
82 |
+
- fo
|
83 |
+
- ht
|
84 |
+
- ps
|
85 |
+
- tk
|
86 |
+
- nn
|
87 |
+
- mt
|
88 |
+
- sa
|
89 |
+
- lb
|
90 |
+
- my
|
91 |
+
- bo
|
92 |
+
- tl
|
93 |
+
- mg
|
94 |
+
- as
|
95 |
+
- tt
|
96 |
+
- haw
|
97 |
+
- ln
|
98 |
+
- ha
|
99 |
+
- ba
|
100 |
+
- jw
|
101 |
+
- su
|
102 |
+
tags:
|
103 |
+
- audio
|
104 |
+
- automatic-speech-recognition
|
105 |
+
- hf-asr-leaderboard
|
106 |
+
pipeline_tag: automatic-speech-recognition
|
107 |
+
license: apache-2.0
|
108 |
+
license_link: https://choosealicense.com/licenses/apache-2.0/
|
109 |
+
---
|
110 |
+
|
111 |
+
# whisper-base-int4-ov
|
112 |
+
* Model creator: [OpenAI](https://huggingface.co/openai)
|
113 |
+
* Original model: [whisper-base](https://huggingface.co/openai/whisper-base)
|
114 |
+
|
115 |
+
## Description
|
116 |
+
This is [whisper-base](https://huggingface.co/openai/whisper-base) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2025/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT4 by [NNCF](https://github.com/openvinotoolkit/nncf).
|
117 |
+
|
118 |
+
|
119 |
+
## Quantization Parameters
|
120 |
+
|
121 |
+
Weight compression was performed using `nncf.compress_weights` with the following parameters:
|
122 |
+
|
123 |
+
* mode: **INT4_ASYM**
|
124 |
+
* ratio: **1.0**
|
125 |
+
* group_size: **128**
|
126 |
+
|
127 |
+
For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2025/openvino-workflow/model-optimization-guide/weight-compression.html).
|
128 |
+
|
129 |
+
|
130 |
+
## Compatibility
|
131 |
+
|
132 |
+
The provided OpenVINO™ IR model is compatible with:
|
133 |
+
|
134 |
+
* OpenVINO version 2025.1.0 and higher
|
135 |
+
* Optimum Intel 1.23.0 and higher
|
136 |
+
|
137 |
+
|
138 |
+
## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index)
|
139 |
+
|
140 |
+
1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
|
141 |
+
|
142 |
+
```
|
143 |
+
pip install optimum[openvino]
|
144 |
+
```
|
145 |
+
|
146 |
+
2. Run model inference:
|
147 |
+
|
148 |
+
```
|
149 |
+
from datasets import load_dataset
|
150 |
+
from transformers import AutoProcessor
|
151 |
+
from optimum.intel.openvino import OVModelForSpeechSeq2Seq
|
152 |
+
|
153 |
+
model_id = "OpenVINO/whisper-base-int4-ov"
|
154 |
+
tokenizer = AutoProcessor.from_pretrained(model_id)
|
155 |
+
model = OVModelForSpeechSeq2Seq.from_pretrained(model_id)
|
156 |
+
|
157 |
+
dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
|
158 |
+
sample = dataset[0]
|
159 |
+
|
160 |
+
input_features = tokenizer(
|
161 |
+
sample["audio"]["array"],
|
162 |
+
sampling_rate=sample["audio"]["sampling_rate"],
|
163 |
+
return_tensors="pt",
|
164 |
+
).input_features
|
165 |
+
|
166 |
+
outputs = model.generate(input_features)
|
167 |
+
text = tokenizer.batch_decode(outputs)[0]
|
168 |
+
print(text)
|
169 |
+
```
|
170 |
+
|
171 |
+
## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai)
|
172 |
+
|
173 |
+
1. Install packages required for using OpenVINO GenAI.
|
174 |
+
```
|
175 |
+
pip install huggingface_hub
|
176 |
+
pip install -U --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly openvino openvino-tokenizers openvino-genai
|
177 |
+
```
|
178 |
+
|
179 |
+
2. Download model from HuggingFace Hub
|
180 |
+
|
181 |
+
```
|
182 |
+
import huggingface_hub as hf_hub
|
183 |
+
|
184 |
+
model_id = "OpenVINO/whisper-base-int4-ov"
|
185 |
+
model_path = "whisper-base-int4-ov"
|
186 |
+
|
187 |
+
hf_hub.snapshot_download(model_id, local_dir=model_path)
|
188 |
+
|
189 |
+
```
|
190 |
+
|
191 |
+
3. Run model inference:
|
192 |
+
|
193 |
+
```
|
194 |
+
import openvino_genai as ov_genai
|
195 |
+
import datasets
|
196 |
+
|
197 |
+
device = "CPU"
|
198 |
+
pipe = ov_genai.WhisperPipeline(model_path, device)
|
199 |
+
|
200 |
+
dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
|
201 |
+
sample = dataset[0]["audio"]["array"]
|
202 |
+
print(pipe.generate(sample))
|
203 |
+
```
|
204 |
+
|
205 |
+
More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples)
|
206 |
+
|
207 |
+
## Limitations
|
208 |
+
|
209 |
+
Check the original model card for [original model card](https://huggingface.co/openai/whisper-base) for limitations.
|
210 |
+
|
211 |
+
## Legal information
|
212 |
+
|
213 |
+
The original model is distributed under [apache-2.0](https://choosealicense.com/licenses/apache-2.0/) license. More details can be found in [original model card](https://huggingface.co/openai/whisper-base).
|
214 |
+
|
215 |
+
## Disclaimer
|
216 |
+
|
217 |
+
Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.
|
README.md
CHANGED
@@ -1,33 +1,139 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
license_link: https://choosealicense.com/licenses/apache-2.0/
|
4 |
-
base_model: openai/whisper-base
|
5 |
-
base_model_relation: quantized
|
6 |
---
|
|
|
7 |
# whisper-base-int4-ov
|
8 |
-
* Model creator: [
|
9 |
* Original model: [whisper-base](https://huggingface.co/openai/whisper-base)
|
10 |
|
11 |
## Description
|
12 |
-
This is [whisper-base](https://huggingface.co/openai/whisper-base) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/
|
|
|
13 |
|
14 |
## Quantization Parameters
|
15 |
|
16 |
Weight compression was performed using `nncf.compress_weights` with the following parameters:
|
17 |
|
18 |
-
* mode: **
|
19 |
-
* ratio: **1**
|
20 |
* group_size: **128**
|
21 |
|
22 |
-
For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/
|
23 |
|
24 |
|
25 |
## Compatibility
|
26 |
|
27 |
The provided OpenVINO™ IR model is compatible with:
|
28 |
|
29 |
-
* OpenVINO version
|
30 |
-
* Optimum Intel 1.
|
|
|
31 |
|
32 |
## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index)
|
33 |
|
@@ -40,6 +146,7 @@ pip install optimum[openvino]
|
|
40 |
2. Run model inference:
|
41 |
|
42 |
```
|
|
|
43 |
from transformers import AutoProcessor
|
44 |
from optimum.intel.openvino import OVModelForSpeechSeq2Seq
|
45 |
|
@@ -50,14 +157,14 @@ model = OVModelForSpeechSeq2Seq.from_pretrained(model_id)
|
|
50 |
dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
|
51 |
sample = dataset[0]
|
52 |
|
53 |
-
input_features =
|
54 |
sample["audio"]["array"],
|
55 |
sampling_rate=sample["audio"]["sampling_rate"],
|
56 |
return_tensors="pt",
|
57 |
).input_features
|
58 |
|
59 |
outputs = model.generate(input_features)
|
60 |
-
text =
|
61 |
print(text)
|
62 |
```
|
63 |
|
@@ -91,7 +198,7 @@ device = "CPU"
|
|
91 |
pipe = ov_genai.WhisperPipeline(model_path, device)
|
92 |
|
93 |
dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
|
94 |
-
sample = dataset[0]["audio]["array"]
|
95 |
print(pipe.generate(sample))
|
96 |
```
|
97 |
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- zh
|
5 |
+
- de
|
6 |
+
- es
|
7 |
+
- ru
|
8 |
+
- ko
|
9 |
+
- fr
|
10 |
+
- ja
|
11 |
+
- pt
|
12 |
+
- tr
|
13 |
+
- pl
|
14 |
+
- ca
|
15 |
+
- nl
|
16 |
+
- ar
|
17 |
+
- sv
|
18 |
+
- it
|
19 |
+
- id
|
20 |
+
- hi
|
21 |
+
- fi
|
22 |
+
- vi
|
23 |
+
- he
|
24 |
+
- uk
|
25 |
+
- el
|
26 |
+
- ms
|
27 |
+
- cs
|
28 |
+
- ro
|
29 |
+
- da
|
30 |
+
- hu
|
31 |
+
- ta
|
32 |
+
- no
|
33 |
+
- th
|
34 |
+
- ur
|
35 |
+
- hr
|
36 |
+
- bg
|
37 |
+
- lt
|
38 |
+
- la
|
39 |
+
- mi
|
40 |
+
- ml
|
41 |
+
- cy
|
42 |
+
- sk
|
43 |
+
- te
|
44 |
+
- fa
|
45 |
+
- lv
|
46 |
+
- bn
|
47 |
+
- sr
|
48 |
+
- az
|
49 |
+
- sl
|
50 |
+
- kn
|
51 |
+
- et
|
52 |
+
- mk
|
53 |
+
- br
|
54 |
+
- eu
|
55 |
+
- is
|
56 |
+
- hy
|
57 |
+
- ne
|
58 |
+
- mn
|
59 |
+
- bs
|
60 |
+
- kk
|
61 |
+
- sq
|
62 |
+
- sw
|
63 |
+
- gl
|
64 |
+
- mr
|
65 |
+
- pa
|
66 |
+
- si
|
67 |
+
- km
|
68 |
+
- sn
|
69 |
+
- yo
|
70 |
+
- so
|
71 |
+
- af
|
72 |
+
- oc
|
73 |
+
- ka
|
74 |
+
- be
|
75 |
+
- tg
|
76 |
+
- sd
|
77 |
+
- gu
|
78 |
+
- am
|
79 |
+
- yi
|
80 |
+
- lo
|
81 |
+
- uz
|
82 |
+
- fo
|
83 |
+
- ht
|
84 |
+
- ps
|
85 |
+
- tk
|
86 |
+
- nn
|
87 |
+
- mt
|
88 |
+
- sa
|
89 |
+
- lb
|
90 |
+
- my
|
91 |
+
- bo
|
92 |
+
- tl
|
93 |
+
- mg
|
94 |
+
- as
|
95 |
+
- tt
|
96 |
+
- haw
|
97 |
+
- ln
|
98 |
+
- ha
|
99 |
+
- ba
|
100 |
+
- jw
|
101 |
+
- su
|
102 |
+
tags:
|
103 |
+
- audio
|
104 |
+
- automatic-speech-recognition
|
105 |
+
- hf-asr-leaderboard
|
106 |
+
pipeline_tag: automatic-speech-recognition
|
107 |
license: apache-2.0
|
108 |
license_link: https://choosealicense.com/licenses/apache-2.0/
|
|
|
|
|
109 |
---
|
110 |
+
|
111 |
# whisper-base-int4-ov
|
112 |
+
* Model creator: [OpenAI](https://huggingface.co/openai)
|
113 |
* Original model: [whisper-base](https://huggingface.co/openai/whisper-base)
|
114 |
|
115 |
## Description
|
116 |
+
This is [whisper-base](https://huggingface.co/openai/whisper-base) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2025/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT4 by [NNCF](https://github.com/openvinotoolkit/nncf).
|
117 |
+
|
118 |
|
119 |
## Quantization Parameters
|
120 |
|
121 |
Weight compression was performed using `nncf.compress_weights` with the following parameters:
|
122 |
|
123 |
+
* mode: **INT4_ASYM**
|
124 |
+
* ratio: **1.0**
|
125 |
* group_size: **128**
|
126 |
|
127 |
+
For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2025/openvino-workflow/model-optimization-guide/weight-compression.html).
|
128 |
|
129 |
|
130 |
## Compatibility
|
131 |
|
132 |
The provided OpenVINO™ IR model is compatible with:
|
133 |
|
134 |
+
* OpenVINO version 2025.1.0 and higher
|
135 |
+
* Optimum Intel 1.23.0 and higher
|
136 |
+
|
137 |
|
138 |
## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index)
|
139 |
|
|
|
146 |
2. Run model inference:
|
147 |
|
148 |
```
|
149 |
+
from datasets import load_dataset
|
150 |
from transformers import AutoProcessor
|
151 |
from optimum.intel.openvino import OVModelForSpeechSeq2Seq
|
152 |
|
|
|
157 |
dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
|
158 |
sample = dataset[0]
|
159 |
|
160 |
+
input_features = tokenizer(
|
161 |
sample["audio"]["array"],
|
162 |
sampling_rate=sample["audio"]["sampling_rate"],
|
163 |
return_tensors="pt",
|
164 |
).input_features
|
165 |
|
166 |
outputs = model.generate(input_features)
|
167 |
+
text = tokenizer.batch_decode(outputs)[0]
|
168 |
print(text)
|
169 |
```
|
170 |
|
|
|
198 |
pipe = ov_genai.WhisperPipeline(model_path, device)
|
199 |
|
200 |
dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
|
201 |
+
sample = dataset[0]["audio"]["array"]
|
202 |
print(pipe.generate(sample))
|
203 |
```
|
204 |
|
config.json
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
{
|
2 |
"_attn_implementation_autoset": true,
|
3 |
-
"_name_or_path": "OpenVINO/whisper-base-int4-ov",
|
4 |
"activation_dropout": 0.0,
|
5 |
"activation_function": "gelu",
|
6 |
"apply_spec_augment": false,
|
@@ -54,7 +53,8 @@
|
|
54 |
"num_mel_bins": 80,
|
55 |
"pad_token_id": 50257,
|
56 |
"scale_embedding": false,
|
57 |
-
"
|
|
|
58 |
"use_cache": true,
|
59 |
"use_weighted_layer_sum": false,
|
60 |
"vocab_size": 51865
|
|
|
1 |
{
|
2 |
"_attn_implementation_autoset": true,
|
|
|
3 |
"activation_dropout": 0.0,
|
4 |
"activation_function": "gelu",
|
5 |
"apply_spec_augment": false,
|
|
|
53 |
"num_mel_bins": 80,
|
54 |
"pad_token_id": 50257,
|
55 |
"scale_embedding": false,
|
56 |
+
"torch_dtype": "float32",
|
57 |
+
"transformers_version": "4.51.3",
|
58 |
"use_cache": true,
|
59 |
"use_weighted_layer_sum": false,
|
60 |
"vocab_size": 51865
|
generation_config.json
CHANGED
@@ -252,5 +252,5 @@
|
|
252 |
"transcribe": 50359,
|
253 |
"translate": 50358
|
254 |
},
|
255 |
-
"transformers_version": "4.
|
256 |
}
|
|
|
252 |
"transcribe": 50359,
|
253 |
"translate": 50358
|
254 |
},
|
255 |
+
"transformers_version": "4.51.3"
|
256 |
}
|
openvino_decoder_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83acf4fbb10cdfdedb25ccc4a2df74010500f69a3332f0530fbba5aee659c7d8
|
3 |
+
size 40228835
|
openvino_decoder_model.xml
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
openvino_detokenizer.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2542d1fe6c4c5d838e7b7c61b24996b94ae0cb54e64ff6dbaab2b9dd5ddd7ca0
|
3 |
+
size 736181
|
openvino_detokenizer.xml
CHANGED
@@ -1,16 +1,16 @@
|
|
1 |
<?xml version="1.0"?>
|
2 |
<net name="detokenizer" version="11">
|
3 |
<layers>
|
4 |
-
<layer id="0" name="
|
5 |
<data shape="?,?" element_type="i64" />
|
6 |
<output>
|
7 |
-
<port id="0" precision="I64" names="
|
8 |
<dim>-1</dim>
|
9 |
<dim>-1</dim>
|
10 |
</port>
|
11 |
</output>
|
12 |
</layer>
|
13 |
-
<layer id="1" name="
|
14 |
<data destination_type="i32" />
|
15 |
<input>
|
16 |
<port id="0" precision="I64">
|
@@ -25,54 +25,59 @@
|
|
25 |
</port>
|
26 |
</output>
|
27 |
</layer>
|
28 |
-
<layer id="2" name="
|
29 |
-
<data element_type="
|
30 |
<output>
|
31 |
-
<port id="0" precision="
|
32 |
-
<dim>
|
33 |
</port>
|
34 |
</output>
|
35 |
</layer>
|
36 |
-
<layer id="3" name="
|
37 |
-
<data
|
38 |
-
<input>
|
39 |
-
<port id="0" precision="U8">
|
40 |
-
<dim>528248</dim>
|
41 |
-
</port>
|
42 |
-
</input>
|
43 |
<output>
|
44 |
-
<port id="
|
45 |
-
<dim
|
46 |
</port>
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
49 |
</port>
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
52 |
</port>
|
53 |
</output>
|
54 |
</layer>
|
55 |
-
<layer id="
|
56 |
-
<data skip_tokens="
|
57 |
<input>
|
58 |
<port id="0" precision="I32">
|
59 |
<dim>-1</dim>
|
60 |
<dim>-1</dim>
|
61 |
</port>
|
62 |
<port id="1" precision="I32">
|
63 |
-
<dim
|
64 |
</port>
|
65 |
<port id="2" precision="I32">
|
66 |
-
<dim
|
67 |
</port>
|
68 |
<port id="3" precision="U8">
|
69 |
-
<dim
|
70 |
</port>
|
71 |
-
</input>
|
72 |
-
<output>
|
73 |
<port id="4" precision="I32">
|
74 |
-
<dim
|
75 |
</port>
|
|
|
|
|
76 |
<port id="5" precision="I32">
|
77 |
<dim>-1</dim>
|
78 |
</port>
|
@@ -82,12 +87,15 @@
|
|
82 |
<port id="7" precision="I32">
|
83 |
<dim>-1</dim>
|
84 |
</port>
|
85 |
-
<port id="8" precision="
|
|
|
|
|
|
|
86 |
<dim>-1</dim>
|
87 |
</port>
|
88 |
</output>
|
89 |
</layer>
|
90 |
-
<layer id="
|
91 |
<input>
|
92 |
<port id="0" precision="I32">
|
93 |
<dim>-1</dim>
|
@@ -111,23 +119,48 @@
|
|
111 |
</port>
|
112 |
</output>
|
113 |
</layer>
|
114 |
-
<layer id="
|
115 |
-
<data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
<output>
|
117 |
<port id="0" precision="U8">
|
118 |
-
<dim>
|
119 |
</port>
|
120 |
</output>
|
121 |
</layer>
|
122 |
-
<layer id="
|
123 |
-
<data element_type="u8" shape="2" offset="
|
124 |
<output>
|
125 |
<port id="0" precision="U8">
|
126 |
<dim>2</dim>
|
127 |
</port>
|
128 |
</output>
|
129 |
</layer>
|
130 |
-
<layer id="
|
131 |
<data global_replace="true" />
|
132 |
<input>
|
133 |
<port id="0" precision="I32">
|
@@ -140,7 +173,7 @@
|
|
140 |
<dim>-1</dim>
|
141 |
</port>
|
142 |
<port id="3" precision="U8">
|
143 |
-
<dim>
|
144 |
</port>
|
145 |
<port id="4" precision="U8">
|
146 |
<dim>2</dim>
|
@@ -158,8 +191,7 @@
|
|
158 |
</port>
|
159 |
</output>
|
160 |
</layer>
|
161 |
-
<layer id="
|
162 |
-
<data mode="begins_ends" />
|
163 |
<input>
|
164 |
<port id="0" precision="I32">
|
165 |
<dim>-1</dim>
|
@@ -172,12 +204,12 @@
|
|
172 |
</port>
|
173 |
</input>
|
174 |
<output>
|
175 |
-
<port id="3" precision="STRING" names="string_output">
|
176 |
<dim>-1</dim>
|
177 |
</port>
|
178 |
</output>
|
179 |
</layer>
|
180 |
-
<layer id="
|
181 |
<input>
|
182 |
<port id="0" precision="STRING">
|
183 |
<dim>-1</dim>
|
@@ -187,24 +219,27 @@
|
|
187 |
</layers>
|
188 |
<edges>
|
189 |
<edge from-layer="0" from-port="0" to-layer="1" to-port="0" />
|
190 |
-
<edge from-layer="1" from-port="1" to-layer="
|
191 |
-
<edge from-layer="2" from-port="0" to-layer="
|
192 |
-
<edge from-layer="3" from-port="
|
193 |
-
<edge from-layer="
|
194 |
-
<edge from-layer="
|
195 |
-
<edge from-layer="
|
196 |
-
<edge from-layer="
|
197 |
-
<edge from-layer="
|
198 |
-
<edge from-layer="
|
199 |
-
<edge from-layer="
|
200 |
-
<edge from-layer="
|
201 |
-
<edge from-layer="
|
202 |
-
<edge from-layer="
|
203 |
-
<edge from-layer="
|
204 |
-
<edge from-layer="8" from-port="5" to-layer="
|
205 |
-
<edge from-layer="
|
206 |
-
<edge from-layer="
|
207 |
-
<edge from-layer="
|
|
|
|
|
|
|
208 |
</edges>
|
209 |
<rt_info>
|
210 |
<add_attention_mask value="True" />
|
@@ -215,21 +250,22 @@
|
|
215 |
<detokenizer_input_type value="i64" />
|
216 |
<eos_token_id value="50257" />
|
217 |
<handle_special_tokens_with_re />
|
|
|
218 |
<number_of_inputs value="1" />
|
219 |
-
<openvino_tokenizers_version value="
|
220 |
-
<openvino_version value="
|
|
|
221 |
<original_tokenizer_class value="<class 'transformers.models.whisper.tokenization_whisper_fast.WhisperTokenizerFast'>" />
|
222 |
<pad_token_id value="50257" />
|
223 |
-
<
|
224 |
<skip_special_tokens value="True" />
|
225 |
<streaming_detokenizer value="False" />
|
226 |
-
<tiktoken_version value="0.8.0" />
|
227 |
<tokenizer_output_type value="i64" />
|
228 |
-
<tokenizers_version value="0.
|
229 |
-
<transformers_version value="4.
|
230 |
<use_max_padding value="False" />
|
231 |
<use_sentencepiece_backend value="False" />
|
232 |
-
<utf8_replace_mode />
|
233 |
<with_detokenizer value="True" />
|
234 |
</rt_info>
|
235 |
</net>
|
|
|
1 |
<?xml version="1.0"?>
|
2 |
<net name="detokenizer" version="11">
|
3 |
<layers>
|
4 |
+
<layer id="0" name="Parameter_24340" type="Parameter" version="opset1">
|
5 |
<data shape="?,?" element_type="i64" />
|
6 |
<output>
|
7 |
+
<port id="0" precision="I64" names="Parameter_24340">
|
8 |
<dim>-1</dim>
|
9 |
<dim>-1</dim>
|
10 |
</port>
|
11 |
</output>
|
12 |
</layer>
|
13 |
+
<layer id="1" name="Convert_24535" type="Convert" version="opset1">
|
14 |
<data destination_type="i32" />
|
15 |
<input>
|
16 |
<port id="0" precision="I64">
|
|
|
25 |
</port>
|
26 |
</output>
|
27 |
</layer>
|
28 |
+
<layer id="2" name="Constant_24342" type="Const" version="opset1">
|
29 |
+
<data element_type="i32" shape="51865" offset="0" size="207460" />
|
30 |
<output>
|
31 |
+
<port id="0" precision="I32">
|
32 |
+
<dim>51865</dim>
|
33 |
</port>
|
34 |
</output>
|
35 |
</layer>
|
36 |
+
<layer id="3" name="Constant_24344" type="Const" version="opset1">
|
37 |
+
<data element_type="i32" shape="51865" offset="207460" size="207460" />
|
|
|
|
|
|
|
|
|
|
|
38 |
<output>
|
39 |
+
<port id="0" precision="I32">
|
40 |
+
<dim>51865</dim>
|
41 |
</port>
|
42 |
+
</output>
|
43 |
+
</layer>
|
44 |
+
<layer id="4" name="Constant_24346" type="Const" version="opset1">
|
45 |
+
<data element_type="u8" shape="320780" offset="414920" size="320780" />
|
46 |
+
<output>
|
47 |
+
<port id="0" precision="U8">
|
48 |
+
<dim>320780</dim>
|
49 |
</port>
|
50 |
+
</output>
|
51 |
+
</layer>
|
52 |
+
<layer id="5" name="Slice_24351" type="Const" version="opset1">
|
53 |
+
<data element_type="i32" shape="107" offset="735700" size="428" />
|
54 |
+
<output>
|
55 |
+
<port id="0" precision="I32">
|
56 |
+
<dim>107</dim>
|
57 |
</port>
|
58 |
</output>
|
59 |
</layer>
|
60 |
+
<layer id="6" name="VocabDecoder_24353" type="VocabDecoder" version="extension">
|
61 |
+
<data skip_tokens="" />
|
62 |
<input>
|
63 |
<port id="0" precision="I32">
|
64 |
<dim>-1</dim>
|
65 |
<dim>-1</dim>
|
66 |
</port>
|
67 |
<port id="1" precision="I32">
|
68 |
+
<dim>51865</dim>
|
69 |
</port>
|
70 |
<port id="2" precision="I32">
|
71 |
+
<dim>51865</dim>
|
72 |
</port>
|
73 |
<port id="3" precision="U8">
|
74 |
+
<dim>320780</dim>
|
75 |
</port>
|
|
|
|
|
76 |
<port id="4" precision="I32">
|
77 |
+
<dim>107</dim>
|
78 |
</port>
|
79 |
+
</input>
|
80 |
+
<output>
|
81 |
<port id="5" precision="I32">
|
82 |
<dim>-1</dim>
|
83 |
</port>
|
|
|
87 |
<port id="7" precision="I32">
|
88 |
<dim>-1</dim>
|
89 |
</port>
|
90 |
+
<port id="8" precision="I32">
|
91 |
+
<dim>-1</dim>
|
92 |
+
</port>
|
93 |
+
<port id="9" precision="U8">
|
94 |
<dim>-1</dim>
|
95 |
</port>
|
96 |
</output>
|
97 |
</layer>
|
98 |
+
<layer id="7" name="FuzeRagged_24354" type="FuzeRagged" version="extension">
|
99 |
<input>
|
100 |
<port id="0" precision="I32">
|
101 |
<dim>-1</dim>
|
|
|
119 |
</port>
|
120 |
</output>
|
121 |
</layer>
|
122 |
+
<layer id="8" name="UTF8Validate_24355" type="UTF8Validate" version="extension">
|
123 |
+
<data replace_mode="true" />
|
124 |
+
<input>
|
125 |
+
<port id="0" precision="I32">
|
126 |
+
<dim>-1</dim>
|
127 |
+
</port>
|
128 |
+
<port id="1" precision="I32">
|
129 |
+
<dim>-1</dim>
|
130 |
+
</port>
|
131 |
+
<port id="2" precision="U8">
|
132 |
+
<dim>-1</dim>
|
133 |
+
</port>
|
134 |
+
</input>
|
135 |
+
<output>
|
136 |
+
<port id="3" precision="I32">
|
137 |
+
<dim>-1</dim>
|
138 |
+
</port>
|
139 |
+
<port id="4" precision="I32">
|
140 |
+
<dim>-1</dim>
|
141 |
+
</port>
|
142 |
+
<port id="5" precision="U8">
|
143 |
+
<dim>-1</dim>
|
144 |
+
</port>
|
145 |
+
</output>
|
146 |
+
</layer>
|
147 |
+
<layer id="9" name="Constant_24357" type="Const" version="opset1">
|
148 |
+
<data element_type="u8" shape="51" offset="736128" size="51" />
|
149 |
<output>
|
150 |
<port id="0" precision="U8">
|
151 |
+
<dim>51</dim>
|
152 |
</port>
|
153 |
</output>
|
154 |
</layer>
|
155 |
+
<layer id="10" name="Constant_24359" type="Const" version="opset1">
|
156 |
+
<data element_type="u8" shape="2" offset="736179" size="2" />
|
157 |
<output>
|
158 |
<port id="0" precision="U8">
|
159 |
<dim>2</dim>
|
160 |
</port>
|
161 |
</output>
|
162 |
</layer>
|
163 |
+
<layer id="11" name="RegexNormalization_24360" type="RegexNormalization" version="extension">
|
164 |
<data global_replace="true" />
|
165 |
<input>
|
166 |
<port id="0" precision="I32">
|
|
|
173 |
<dim>-1</dim>
|
174 |
</port>
|
175 |
<port id="3" precision="U8">
|
176 |
+
<dim>51</dim>
|
177 |
</port>
|
178 |
<port id="4" precision="U8">
|
179 |
<dim>2</dim>
|
|
|
191 |
</port>
|
192 |
</output>
|
193 |
</layer>
|
194 |
+
<layer id="12" name="StringTensorPack_24361" type="StringTensorPack" version="opset15">
|
|
|
195 |
<input>
|
196 |
<port id="0" precision="I32">
|
197 |
<dim>-1</dim>
|
|
|
204 |
</port>
|
205 |
</input>
|
206 |
<output>
|
207 |
+
<port id="3" precision="STRING" names="Result_24362,string_output">
|
208 |
<dim>-1</dim>
|
209 |
</port>
|
210 |
</output>
|
211 |
</layer>
|
212 |
+
<layer id="13" name="Result_24362" type="Result" version="opset1" output_names="Result_24362,string_output">
|
213 |
<input>
|
214 |
<port id="0" precision="STRING">
|
215 |
<dim>-1</dim>
|
|
|
219 |
</layers>
|
220 |
<edges>
|
221 |
<edge from-layer="0" from-port="0" to-layer="1" to-port="0" />
|
222 |
+
<edge from-layer="1" from-port="1" to-layer="6" to-port="0" />
|
223 |
+
<edge from-layer="2" from-port="0" to-layer="6" to-port="1" />
|
224 |
+
<edge from-layer="3" from-port="0" to-layer="6" to-port="2" />
|
225 |
+
<edge from-layer="4" from-port="0" to-layer="6" to-port="3" />
|
226 |
+
<edge from-layer="5" from-port="0" to-layer="6" to-port="4" />
|
227 |
+
<edge from-layer="6" from-port="5" to-layer="7" to-port="0" />
|
228 |
+
<edge from-layer="6" from-port="6" to-layer="7" to-port="1" />
|
229 |
+
<edge from-layer="6" from-port="7" to-layer="7" to-port="2" />
|
230 |
+
<edge from-layer="6" from-port="8" to-layer="7" to-port="3" />
|
231 |
+
<edge from-layer="6" from-port="9" to-layer="8" to-port="2" />
|
232 |
+
<edge from-layer="7" from-port="5" to-layer="8" to-port="1" />
|
233 |
+
<edge from-layer="7" from-port="4" to-layer="8" to-port="0" />
|
234 |
+
<edge from-layer="8" from-port="3" to-layer="11" to-port="0" />
|
235 |
+
<edge from-layer="8" from-port="4" to-layer="11" to-port="1" />
|
236 |
+
<edge from-layer="8" from-port="5" to-layer="11" to-port="2" />
|
237 |
+
<edge from-layer="9" from-port="0" to-layer="11" to-port="3" />
|
238 |
+
<edge from-layer="10" from-port="0" to-layer="11" to-port="4" />
|
239 |
+
<edge from-layer="11" from-port="5" to-layer="12" to-port="0" />
|
240 |
+
<edge from-layer="11" from-port="6" to-layer="12" to-port="1" />
|
241 |
+
<edge from-layer="11" from-port="7" to-layer="12" to-port="2" />
|
242 |
+
<edge from-layer="12" from-port="3" to-layer="13" to-port="0" />
|
243 |
</edges>
|
244 |
<rt_info>
|
245 |
<add_attention_mask value="True" />
|
|
|
250 |
<detokenizer_input_type value="i64" />
|
251 |
<eos_token_id value="50257" />
|
252 |
<handle_special_tokens_with_re />
|
253 |
+
<max_length />
|
254 |
<number_of_inputs value="1" />
|
255 |
+
<openvino_tokenizers_version value="2025.2.0.0-565-130827ab189" />
|
256 |
+
<openvino_version value="2025.2.0-19120-87425bc78ca-releases/2025/2" />
|
257 |
+
<original_post_processor_template value="{"type": "TemplateProcessing", "single": [{"SpecialToken": {"id": "<|startoftranscript|>", "type_id": 0}}, {"SpecialToken": {"id": "<|notimestamps|>", "type_id": 0}}, {"Sequence": {"id": "A", "type_id": 0}}, {"SpecialToken": {"id": "<|endoftext|>", "type_id": 0}}], "pair": [{"SpecialToken": {"id": "<|startoftranscript|>", "type_id": 0}}, {"SpecialToken": {"id": "<|notimestamps|>", "type_id": 0}}, {"Sequence": {"id": "A", "type_id": 0}}, {"Sequence": {"id": "B", "type_id": 1}}, {"SpecialToken": {"id": "<|endoftext|>", "type_id": 1}}], "special_tokens": {"<|endoftext|>": {"id": "<|endoftext|>", "ids": [50257], "tokens": ["<|endoftext|>"]}, "<|notimestamps|>": {"id": "<|notimestamps|>", "ids": [50363], "tokens": ["<|notimestamps|>"]}, "<|startoftranscript|>": {"id": "<|startoftranscript|>", "ids": [50258], "tokens": ["<|startoftranscript|>"]}}}" />
|
258 |
<original_tokenizer_class value="<class 'transformers.models.whisper.tokenization_whisper_fast.WhisperTokenizerFast'>" />
|
259 |
<pad_token_id value="50257" />
|
260 |
+
<processed_post_processor_template value="{"single": {"ids": [50258, 50363, -1, 50257], "type_ids": [0, 0, 0, 0]}, "pair": {"ids": [50258, 50363, -1, -2, 50257], "type_ids": [0, 0, 0, 1, 1]}}" />
|
261 |
<skip_special_tokens value="True" />
|
262 |
<streaming_detokenizer value="False" />
|
|
|
263 |
<tokenizer_output_type value="i64" />
|
264 |
+
<tokenizers_version value="0.21.1" />
|
265 |
+
<transformers_version value="4.51.3" />
|
266 |
<use_max_padding value="False" />
|
267 |
<use_sentencepiece_backend value="False" />
|
268 |
+
<utf8_replace_mode value="replace" />
|
269 |
<with_detokenizer value="True" />
|
270 |
</rt_info>
|
271 |
</net>
|
openvino_encoder_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 14451348
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2bd6864a7ea31cf1347f4430d4b7613a61d7a748032a6548d31eab7404cf869
|
3 |
size 14451348
|
openvino_encoder_model.xml
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
openvino_tokenizer.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78b41c1d8b56734ca7a0942b5517e352074c375282398f5644efe1b02b439129
|
3 |
+
size 1902147
|
openvino_tokenizer.xml
CHANGED
@@ -1,27 +1,27 @@
|
|
1 |
<?xml version="1.0"?>
|
2 |
<net name="tokenizer" version="11">
|
3 |
<layers>
|
4 |
-
<layer id="0" name="
|
5 |
<data shape="?" element_type="string" />
|
6 |
<output>
|
7 |
-
<port id="0" precision="STRING" names="
|
8 |
<dim>-1</dim>
|
9 |
</port>
|
10 |
</output>
|
11 |
</layer>
|
12 |
-
<layer id="1" name="
|
13 |
<data element_type="i32" shape="" offset="0" size="4" />
|
14 |
<output>
|
15 |
<port id="0" precision="I32" />
|
16 |
</output>
|
17 |
</layer>
|
18 |
-
<layer id="2" name="
|
19 |
<data element_type="i32" shape="" offset="4" size="4" />
|
20 |
<output>
|
21 |
<port id="0" precision="I32" />
|
22 |
</output>
|
23 |
</layer>
|
24 |
-
<layer id="3" name="
|
25 |
<data element_type="i32" shape="1" offset="8" size="4" />
|
26 |
<output>
|
27 |
<port id="0" precision="I32">
|
@@ -29,19 +29,19 @@
|
|
29 |
</port>
|
30 |
</output>
|
31 |
</layer>
|
32 |
-
<layer id="4" name="
|
33 |
<data element_type="i32" shape="" offset="0" size="4" />
|
34 |
<output>
|
35 |
<port id="0" precision="I32" />
|
36 |
</output>
|
37 |
</layer>
|
38 |
-
<layer id="5" name="
|
39 |
<data element_type="i32" shape="" offset="4" size="4" />
|
40 |
<output>
|
41 |
<port id="0" precision="I32" />
|
42 |
</output>
|
43 |
</layer>
|
44 |
-
<layer id="6" name="
|
45 |
<data element_type="i32" shape="1" offset="12" size="4" />
|
46 |
<output>
|
47 |
<port id="0" precision="I32">
|
@@ -49,14 +49,13 @@
|
|
49 |
</port>
|
50 |
</output>
|
51 |
</layer>
|
52 |
-
<layer id="7" name="
|
53 |
<data element_type="i64" shape="" offset="16" size="8" />
|
54 |
<output>
|
55 |
<port id="0" precision="I64" />
|
56 |
</output>
|
57 |
</layer>
|
58 |
-
<layer id="8" name="
|
59 |
-
<data mode="begins_ends" />
|
60 |
<input>
|
61 |
<port id="0" precision="STRING">
|
62 |
<dim>-1</dim>
|
@@ -74,7 +73,7 @@
|
|
74 |
</port>
|
75 |
</output>
|
76 |
</layer>
|
77 |
-
<layer id="9" name="
|
78 |
<data output_type="i64" />
|
79 |
<input>
|
80 |
<port id="0" precision="I32">
|
@@ -87,19 +86,19 @@
|
|
87 |
</port>
|
88 |
</output>
|
89 |
</layer>
|
90 |
-
<layer id="10" name="
|
91 |
<data element_type="i64" shape="" offset="16" size="8" />
|
92 |
<output>
|
93 |
<port id="0" precision="I64" />
|
94 |
</output>
|
95 |
</layer>
|
96 |
-
<layer id="11" name="
|
97 |
<data element_type="i64" shape="" offset="16" size="8" />
|
98 |
<output>
|
99 |
<port id="0" precision="I64" />
|
100 |
</output>
|
101 |
</layer>
|
102 |
-
<layer id="12" name="
|
103 |
<data batch_dims="0" />
|
104 |
<input>
|
105 |
<port id="0" precision="I64">
|
@@ -112,13 +111,13 @@
|
|
112 |
<port id="3" precision="I64" />
|
113 |
</output>
|
114 |
</layer>
|
115 |
-
<layer id="13" name="
|
116 |
<data element_type="i64" shape="" offset="24" size="8" />
|
117 |
<output>
|
118 |
<port id="0" precision="I64" />
|
119 |
</output>
|
120 |
</layer>
|
121 |
-
<layer id="14" name="
|
122 |
<data output_type="i32" />
|
123 |
<input>
|
124 |
<port id="0" precision="I64" />
|
@@ -131,19 +130,19 @@
|
|
131 |
</port>
|
132 |
</output>
|
133 |
</layer>
|
134 |
-
<layer id="15" name="
|
135 |
<data element_type="i64" shape="" offset="24" size="8" />
|
136 |
<output>
|
137 |
<port id="0" precision="I64" />
|
138 |
</output>
|
139 |
</layer>
|
140 |
-
<layer id="16" name="
|
141 |
<data element_type="i64" shape="" offset="24" size="8" />
|
142 |
<output>
|
143 |
<port id="0" precision="I64" />
|
144 |
</output>
|
145 |
</layer>
|
146 |
-
<layer id="17" name="
|
147 |
<data auto_broadcast="numpy" />
|
148 |
<input>
|
149 |
<port id="0" precision="I64" />
|
@@ -153,13 +152,13 @@
|
|
153 |
<port id="2" precision="I64" />
|
154 |
</output>
|
155 |
</layer>
|
156 |
-
<layer id="18" name="
|
157 |
<data element_type="i64" shape="" offset="24" size="8" />
|
158 |
<output>
|
159 |
<port id="0" precision="I64" />
|
160 |
</output>
|
161 |
</layer>
|
162 |
-
<layer id="19" name="
|
163 |
<data output_type="i32" />
|
164 |
<input>
|
165 |
<port id="0" precision="I64" />
|
@@ -172,7 +171,7 @@
|
|
172 |
</port>
|
173 |
</output>
|
174 |
</layer>
|
175 |
-
<layer id="20" name="
|
176 |
<data element_type="u8" shape="26479" offset="32" size="26479" />
|
177 |
<output>
|
178 |
<port id="0" precision="U8">
|
@@ -180,7 +179,7 @@
|
|
180 |
</port>
|
181 |
</output>
|
182 |
</layer>
|
183 |
-
<layer id="21" name="
|
184 |
<input>
|
185 |
<port id="0" precision="I32">
|
186 |
<dim>-1</dim>
|
@@ -222,15 +221,15 @@
|
|
222 |
</port>
|
223 |
</output>
|
224 |
</layer>
|
225 |
-
<layer id="22" name="
|
226 |
-
<data element_type="u8" shape="
|
227 |
<output>
|
228 |
<port id="0" precision="U8">
|
229 |
-
<dim>
|
230 |
</port>
|
231 |
</output>
|
232 |
</layer>
|
233 |
-
<layer id="23" name="
|
234 |
<data behaviour="isolate" invert="false" max_splits="-1" />
|
235 |
<input>
|
236 |
<port id="0" precision="I32">
|
@@ -252,7 +251,7 @@
|
|
252 |
<dim>-1</dim>
|
253 |
</port>
|
254 |
<port id="6" precision="U8">
|
255 |
-
<dim>
|
256 |
</port>
|
257 |
</input>
|
258 |
<output>
|
@@ -276,123 +275,111 @@
|
|
276 |
</port>
|
277 |
</output>
|
278 |
</layer>
|
279 |
-
<layer id="24" name="
|
280 |
-
<data element_type="
|
281 |
<output>
|
282 |
-
<port id="0" precision="
|
283 |
-
<dim>
|
284 |
</port>
|
285 |
</output>
|
286 |
</layer>
|
287 |
-
<layer id="25" name="
|
288 |
-
<data
|
289 |
-
<input>
|
290 |
-
<port id="0" precision="U8">
|
291 |
-
<dim>528248</dim>
|
292 |
-
</port>
|
293 |
-
</input>
|
294 |
<output>
|
295 |
-
<port id="
|
296 |
-
<dim
|
297 |
-
</port>
|
298 |
-
<port id="2" precision="I32">
|
299 |
-
<dim>-1</dim>
|
300 |
-
</port>
|
301 |
-
<port id="3" precision="U8">
|
302 |
-
<dim>-1</dim>
|
303 |
</port>
|
304 |
</output>
|
305 |
</layer>
|
306 |
-
<layer id="26" name="
|
307 |
-
<data element_type="u8" shape="
|
308 |
<output>
|
309 |
<port id="0" precision="U8">
|
310 |
-
<dim>
|
311 |
</port>
|
312 |
</output>
|
313 |
</layer>
|
314 |
-
<layer id="27" name="
|
315 |
-
<data
|
316 |
-
<input>
|
317 |
-
<port id="0" precision="U8">
|
318 |
-
<dim>369958</dim>
|
319 |
-
</port>
|
320 |
-
</input>
|
321 |
<output>
|
322 |
-
<port id="
|
323 |
-
<dim
|
324 |
-
</port>
|
325 |
-
<port id="2" precision="I32">
|
326 |
-
<dim>-1</dim>
|
327 |
-
</port>
|
328 |
-
<port id="3" precision="U8">
|
329 |
-
<dim>-1</dim>
|
330 |
</port>
|
331 |
</output>
|
332 |
</layer>
|
333 |
-
<layer id="28" name="
|
334 |
-
<data element_type="
|
335 |
<output>
|
336 |
-
<port id="0" precision="
|
337 |
-
<dim>
|
338 |
</port>
|
339 |
</output>
|
340 |
</layer>
|
341 |
-
<layer id="29" name="
|
342 |
-
<data
|
343 |
-
<
|
344 |
<port id="0" precision="U8">
|
345 |
-
<dim>
|
346 |
</port>
|
347 |
-
</
|
|
|
|
|
|
|
348 |
<output>
|
349 |
-
<port id="
|
350 |
-
<dim
|
351 |
-
</port>
|
352 |
-
<port id="2" precision="I32">
|
353 |
-
<dim>-1</dim>
|
354 |
-
</port>
|
355 |
-
<port id="3" precision="U8">
|
356 |
-
<dim>-1</dim>
|
357 |
</port>
|
358 |
</output>
|
359 |
</layer>
|
360 |
-
<layer id="
|
361 |
-
<data element_type="
|
362 |
<output>
|
363 |
-
<port id="0" precision="
|
364 |
-
<dim>
|
365 |
</port>
|
366 |
</output>
|
367 |
</layer>
|
368 |
-
<layer id="
|
369 |
-
<data
|
370 |
-
<
|
371 |
<port id="0" precision="U8">
|
372 |
-
<dim>
|
373 |
</port>
|
374 |
-
</
|
|
|
|
|
|
|
375 |
<output>
|
376 |
-
<port id="
|
377 |
-
<dim
|
378 |
</port>
|
379 |
-
|
380 |
-
|
|
|
|
|
|
|
|
|
|
|
381 |
</port>
|
382 |
-
|
383 |
-
|
|
|
|
|
|
|
|
|
|
|
384 |
</port>
|
385 |
</output>
|
386 |
</layer>
|
387 |
-
<layer id="
|
388 |
-
<data element_type="i32" shape="1608" offset="
|
389 |
<output>
|
390 |
<port id="0" precision="I32">
|
391 |
<dim>1608</dim>
|
392 |
</port>
|
393 |
</output>
|
394 |
</layer>
|
395 |
-
<layer id="
|
396 |
<data unk_token="" fuse_unk="false" suffix_indicator="" end_suffix="" byte_fallback="false" cache_capacity="20000" />
|
397 |
<input>
|
398 |
<port id="0" precision="I32">
|
@@ -411,40 +398,40 @@
|
|
411 |
<dim>-1</dim>
|
412 |
</port>
|
413 |
<port id="5" precision="I32">
|
414 |
-
<dim
|
415 |
</port>
|
416 |
<port id="6" precision="I32">
|
417 |
-
<dim
|
418 |
</port>
|
419 |
<port id="7" precision="U8">
|
420 |
-
<dim
|
421 |
</port>
|
422 |
<port id="8" precision="I32">
|
423 |
-
<dim
|
424 |
</port>
|
425 |
<port id="9" precision="I32">
|
426 |
-
<dim
|
427 |
</port>
|
428 |
<port id="10" precision="U8">
|
429 |
-
<dim
|
430 |
</port>
|
431 |
<port id="11" precision="I32">
|
432 |
-
<dim
|
433 |
</port>
|
434 |
<port id="12" precision="I32">
|
435 |
-
<dim
|
436 |
</port>
|
437 |
<port id="13" precision="U8">
|
438 |
-
<dim
|
439 |
</port>
|
440 |
<port id="14" precision="I32">
|
441 |
-
<dim
|
442 |
</port>
|
443 |
<port id="15" precision="I32">
|
444 |
-
<dim
|
445 |
</port>
|
446 |
<port id="16" precision="U8">
|
447 |
-
<dim
|
448 |
</port>
|
449 |
<port id="17" precision="I32">
|
450 |
<dim>1608</dim>
|
@@ -462,44 +449,30 @@
|
|
462 |
</port>
|
463 |
</output>
|
464 |
</layer>
|
465 |
-
<layer id="
|
466 |
-
<data
|
467 |
-
<input>
|
468 |
-
<port id="0" precision="I32">
|
469 |
-
<dim>-1</dim>
|
470 |
-
</port>
|
471 |
-
<port id="1" precision="I32">
|
472 |
-
<dim>-1</dim>
|
473 |
-
</port>
|
474 |
-
</input>
|
475 |
<output>
|
476 |
-
<port id="
|
477 |
-
<dim>-1</dim>
|
478 |
-
</port>
|
479 |
</output>
|
480 |
</layer>
|
481 |
-
<layer id="
|
482 |
-
<data element_type="
|
483 |
<output>
|
484 |
-
<port id="0" precision="
|
|
|
|
|
485 |
</output>
|
486 |
</layer>
|
487 |
-
<layer id="
|
488 |
-
<data
|
489 |
-
<input>
|
490 |
-
<port id="0" precision="I32">
|
491 |
-
<dim>-1</dim>
|
492 |
-
</port>
|
493 |
-
<port id="1" precision="I32" />
|
494 |
-
</input>
|
495 |
<output>
|
496 |
-
<port id="
|
497 |
-
<dim
|
498 |
</port>
|
499 |
</output>
|
500 |
</layer>
|
501 |
-
<layer id="
|
502 |
-
<data
|
503 |
<input>
|
504 |
<port id="0" precision="I32">
|
505 |
<dim>-1</dim>
|
@@ -507,42 +480,58 @@
|
|
507 |
<port id="1" precision="I32">
|
508 |
<dim>-1</dim>
|
509 |
</port>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
510 |
</input>
|
511 |
<output>
|
512 |
-
<port id="
|
|
|
|
|
|
|
|
|
|
|
|
|
513 |
<dim>-1</dim>
|
514 |
</port>
|
515 |
</output>
|
516 |
</layer>
|
517 |
-
<layer id="
|
518 |
<data element_type="i32" shape="" offset="0" size="4" />
|
519 |
<output>
|
520 |
<port id="0" precision="I32" />
|
521 |
</output>
|
522 |
</layer>
|
523 |
-
<layer id="
|
524 |
<data element_type="i32" shape="" offset="4" size="4" />
|
525 |
<output>
|
526 |
<port id="0" precision="I32" />
|
527 |
</output>
|
528 |
</layer>
|
529 |
-
<layer id="
|
530 |
-
<data element_type="i32" shape="1" offset="
|
531 |
<output>
|
532 |
<port id="0" precision="I32">
|
533 |
<dim>1</dim>
|
534 |
</port>
|
535 |
</output>
|
536 |
</layer>
|
537 |
-
<layer id="
|
538 |
-
<data element_type="i32" shape="4" offset="
|
539 |
<output>
|
540 |
<port id="0" precision="I32">
|
541 |
<dim>4</dim>
|
542 |
</port>
|
543 |
</output>
|
544 |
</layer>
|
545 |
-
<layer id="
|
546 |
<input>
|
547 |
<port id="0" precision="I32" />
|
548 |
<port id="1" precision="I32" />
|
@@ -593,7 +582,7 @@
|
|
593 |
</port>
|
594 |
</output>
|
595 |
</layer>
|
596 |
-
<layer id="
|
597 |
<data auto_broadcast="numpy" />
|
598 |
<input>
|
599 |
<port id="0" precision="I32">
|
@@ -609,13 +598,13 @@
|
|
609 |
</port>
|
610 |
</output>
|
611 |
</layer>
|
612 |
-
<layer id="
|
613 |
<data element_type="i32" shape="" offset="0" size="4" />
|
614 |
<output>
|
615 |
<port id="0" precision="I32" />
|
616 |
</output>
|
617 |
</layer>
|
618 |
-
<layer id="
|
619 |
<data keep_dims="false" />
|
620 |
<input>
|
621 |
<port id="0" precision="I32">
|
@@ -627,14 +616,14 @@
|
|
627 |
<port id="2" precision="I32" />
|
628 |
</output>
|
629 |
</layer>
|
630 |
-
<layer id="
|
631 |
-
<data element_type="i32" shape="" offset="
|
632 |
<output>
|
633 |
<port id="0" precision="I32" />
|
634 |
</output>
|
635 |
</layer>
|
636 |
-
<layer id="
|
637 |
-
<data pad_right="true" />
|
638 |
<input>
|
639 |
<port id="0" precision="I32">
|
640 |
<dim>-1</dim>
|
@@ -659,7 +648,7 @@
|
|
659 |
</port>
|
660 |
</output>
|
661 |
</layer>
|
662 |
-
<layer id="
|
663 |
<data destination_type="i32" />
|
664 |
<input>
|
665 |
<port id="0" precision="BOOL">
|
@@ -674,7 +663,7 @@
|
|
674 |
</port>
|
675 |
</output>
|
676 |
</layer>
|
677 |
-
<layer id="
|
678 |
<data destination_type="i64" />
|
679 |
<input>
|
680 |
<port id="0" precision="I32">
|
@@ -689,7 +678,7 @@
|
|
689 |
</port>
|
690 |
</output>
|
691 |
</layer>
|
692 |
-
<layer id="
|
693 |
<data destination_type="i64" />
|
694 |
<input>
|
695 |
<port id="0" precision="I32">
|
@@ -704,7 +693,7 @@
|
|
704 |
</port>
|
705 |
</output>
|
706 |
</layer>
|
707 |
-
<layer id="
|
708 |
<input>
|
709 |
<port id="0" precision="I64">
|
710 |
<dim>-1</dim>
|
@@ -712,7 +701,7 @@
|
|
712 |
</port>
|
713 |
</input>
|
714 |
</layer>
|
715 |
-
<layer id="
|
716 |
<input>
|
717 |
<port id="0" precision="I64">
|
718 |
<dim>-1</dim>
|
@@ -723,12 +712,12 @@
|
|
723 |
</layers>
|
724 |
<edges>
|
725 |
<edge from-layer="0" from-port="0" to-layer="8" to-port="0" />
|
726 |
-
<edge from-layer="1" from-port="0" to-layer="
|
727 |
-
<edge from-layer="2" from-port="0" to-layer="
|
728 |
-
<edge from-layer="3" from-port="0" to-layer="
|
729 |
-
<edge from-layer="4" from-port="0" to-layer="
|
730 |
-
<edge from-layer="5" from-port="0" to-layer="
|
731 |
-
<edge from-layer="6" from-port="0" to-layer="
|
732 |
<edge from-layer="7" from-port="0" to-layer="14" to-port="0" />
|
733 |
<edge from-layer="8" from-port="1" to-layer="9" to-port="0" />
|
734 |
<edge from-layer="8" from-port="3" to-layer="21" to-port="4" />
|
@@ -737,8 +726,8 @@
|
|
737 |
<edge from-layer="9" from-port="1" to-layer="12" to-port="0" />
|
738 |
<edge from-layer="10" from-port="0" to-layer="12" to-port="1" />
|
739 |
<edge from-layer="11" from-port="0" to-layer="12" to-port="2" />
|
740 |
-
<edge from-layer="12" from-port="3" to-layer="14" to-port="1" />
|
741 |
<edge from-layer="12" from-port="3" to-layer="17" to-port="0" />
|
|
|
742 |
<edge from-layer="13" from-port="0" to-layer="14" to-port="2" />
|
743 |
<edge from-layer="14" from-port="3" to-layer="21" to-port="0" />
|
744 |
<edge from-layer="15" from-port="0" to-layer="19" to-port="0" />
|
@@ -747,62 +736,58 @@
|
|
747 |
<edge from-layer="18" from-port="0" to-layer="19" to-port="2" />
|
748 |
<edge from-layer="19" from-port="3" to-layer="21" to-port="1" />
|
749 |
<edge from-layer="20" from-port="0" to-layer="21" to-port="5" />
|
|
|
750 |
<edge from-layer="21" from-port="7" to-layer="23" to-port="1" />
|
751 |
<edge from-layer="21" from-port="8" to-layer="23" to-port="2" />
|
752 |
<edge from-layer="21" from-port="9" to-layer="23" to-port="3" />
|
753 |
<edge from-layer="21" from-port="10" to-layer="23" to-port="4" />
|
754 |
<edge from-layer="21" from-port="11" to-layer="23" to-port="5" />
|
755 |
-
<edge from-layer="21" from-port="6" to-layer="23" to-port="0" />
|
756 |
<edge from-layer="22" from-port="0" to-layer="23" to-port="6" />
|
757 |
-
<edge from-layer="23" from-port="
|
758 |
-
<edge from-layer="23" from-port="11" to-layer="
|
759 |
-
<edge from-layer="23" from-port="10" to-layer="
|
760 |
-
<edge from-layer="23" from-port="
|
761 |
-
<edge from-layer="23" from-port="
|
762 |
-
<edge from-layer="24" from-port="0" to-layer="
|
763 |
-
<edge from-layer="25" from-port="
|
764 |
-
<edge from-layer="
|
765 |
-
<edge from-layer="
|
766 |
-
<edge from-layer="
|
767 |
-
<edge from-layer="
|
768 |
-
<edge from-layer="
|
769 |
-
<edge from-layer="
|
770 |
-
<edge from-layer="
|
771 |
-
<edge from-layer="
|
772 |
-
<edge from-layer="
|
773 |
-
<edge from-layer="
|
774 |
-
<edge from-layer="
|
775 |
-
<edge from-layer="
|
776 |
-
<edge from-layer="
|
777 |
-
<edge from-layer="
|
778 |
-
<edge from-layer="
|
779 |
-
<edge from-layer="
|
780 |
-
<edge from-layer="
|
781 |
-
<edge from-layer="
|
782 |
-
<edge from-layer="
|
783 |
-
<edge from-layer="
|
784 |
-
<edge from-layer="
|
785 |
-
<edge from-layer="
|
786 |
-
<edge from-layer="
|
787 |
-
<edge from-layer="
|
788 |
-
<edge from-layer="
|
789 |
-
<edge from-layer="
|
790 |
-
<edge from-layer="
|
791 |
-
<edge from-layer="
|
792 |
-
<edge from-layer="
|
793 |
-
<edge from-layer="
|
794 |
-
<edge from-layer="
|
795 |
-
<edge from-layer="
|
796 |
-
<edge from-layer="
|
797 |
-
<edge from-layer="
|
798 |
-
<edge from-layer="
|
799 |
-
<edge from-layer="
|
800 |
-
<edge from-layer="
|
801 |
-
<edge from-layer="
|
802 |
-
<edge from-layer="47" from-port="5" to-layer="51" to-port="0" />
|
803 |
-
<edge from-layer="48" from-port="1" to-layer="49" to-port="0" />
|
804 |
-
<edge from-layer="49" from-port="1" to-layer="50" to-port="0" />
|
805 |
-
<edge from-layer="51" from-port="1" to-layer="52" to-port="0" />
|
806 |
</edges>
|
807 |
<rt_info>
|
808 |
<add_attention_mask value="True" />
|
@@ -813,21 +798,22 @@
|
|
813 |
<detokenizer_input_type value="i64" />
|
814 |
<eos_token_id value="50257" />
|
815 |
<handle_special_tokens_with_re />
|
|
|
816 |
<number_of_inputs value="1" />
|
817 |
-
<openvino_tokenizers_version value="
|
818 |
-
<openvino_version value="
|
|
|
819 |
<original_tokenizer_class value="<class 'transformers.models.whisper.tokenization_whisper_fast.WhisperTokenizerFast'>" />
|
820 |
<pad_token_id value="50257" />
|
821 |
-
<
|
822 |
<skip_special_tokens value="True" />
|
823 |
<streaming_detokenizer value="False" />
|
824 |
-
<tiktoken_version value="0.8.0" />
|
825 |
<tokenizer_output_type value="i64" />
|
826 |
-
<tokenizers_version value="0.
|
827 |
-
<transformers_version value="4.
|
828 |
<use_max_padding value="False" />
|
829 |
<use_sentencepiece_backend value="False" />
|
830 |
-
<utf8_replace_mode />
|
831 |
<with_detokenizer value="True" />
|
832 |
</rt_info>
|
833 |
</net>
|
|
|
1 |
<?xml version="1.0"?>
|
2 |
<net name="tokenizer" version="11">
|
3 |
<layers>
|
4 |
+
<layer id="0" name="Parameter_24206" type="Parameter" version="opset1">
|
5 |
<data shape="?" element_type="string" />
|
6 |
<output>
|
7 |
+
<port id="0" precision="STRING" names="Parameter_24206">
|
8 |
<dim>-1</dim>
|
9 |
</port>
|
10 |
</output>
|
11 |
</layer>
|
12 |
+
<layer id="1" name="Constant_24318" type="Const" version="opset1">
|
13 |
<data element_type="i32" shape="" offset="0" size="4" />
|
14 |
<output>
|
15 |
<port id="0" precision="I32" />
|
16 |
</output>
|
17 |
</layer>
|
18 |
+
<layer id="2" name="Constant_24319" type="Const" version="opset1">
|
19 |
<data element_type="i32" shape="" offset="4" size="4" />
|
20 |
<output>
|
21 |
<port id="0" precision="I32" />
|
22 |
</output>
|
23 |
</layer>
|
24 |
+
<layer id="3" name="Constant_24320" type="Const" version="opset1">
|
25 |
<data element_type="i32" shape="1" offset="8" size="4" />
|
26 |
<output>
|
27 |
<port id="0" precision="I32">
|
|
|
29 |
</port>
|
30 |
</output>
|
31 |
</layer>
|
32 |
+
<layer id="4" name="Constant_24321" type="Const" version="opset1">
|
33 |
<data element_type="i32" shape="" offset="0" size="4" />
|
34 |
<output>
|
35 |
<port id="0" precision="I32" />
|
36 |
</output>
|
37 |
</layer>
|
38 |
+
<layer id="5" name="Constant_24322" type="Const" version="opset1">
|
39 |
<data element_type="i32" shape="" offset="4" size="4" />
|
40 |
<output>
|
41 |
<port id="0" precision="I32" />
|
42 |
</output>
|
43 |
</layer>
|
44 |
+
<layer id="6" name="Constant_24323" type="Const" version="opset1">
|
45 |
<data element_type="i32" shape="1" offset="12" size="4" />
|
46 |
<output>
|
47 |
<port id="0" precision="I32">
|
|
|
49 |
</port>
|
50 |
</output>
|
51 |
</layer>
|
52 |
+
<layer id="7" name="Constant_24212" type="Const" version="opset1">
|
53 |
<data element_type="i64" shape="" offset="16" size="8" />
|
54 |
<output>
|
55 |
<port id="0" precision="I64" />
|
56 |
</output>
|
57 |
</layer>
|
58 |
+
<layer id="8" name="StringTensorUnpack_24207" type="StringTensorUnpack" version="opset15">
|
|
|
59 |
<input>
|
60 |
<port id="0" precision="STRING">
|
61 |
<dim>-1</dim>
|
|
|
73 |
</port>
|
74 |
</output>
|
75 |
</layer>
|
76 |
+
<layer id="9" name="ShapeOf_24208" type="ShapeOf" version="opset3">
|
77 |
<data output_type="i64" />
|
78 |
<input>
|
79 |
<port id="0" precision="I32">
|
|
|
86 |
</port>
|
87 |
</output>
|
88 |
</layer>
|
89 |
+
<layer id="10" name="Constant_24209" type="Const" version="opset1">
|
90 |
<data element_type="i64" shape="" offset="16" size="8" />
|
91 |
<output>
|
92 |
<port id="0" precision="I64" />
|
93 |
</output>
|
94 |
</layer>
|
95 |
+
<layer id="11" name="Constant_24210" type="Const" version="opset1">
|
96 |
<data element_type="i64" shape="" offset="16" size="8" />
|
97 |
<output>
|
98 |
<port id="0" precision="I64" />
|
99 |
</output>
|
100 |
</layer>
|
101 |
+
<layer id="12" name="Gather_24211" type="Gather" version="opset8">
|
102 |
<data batch_dims="0" />
|
103 |
<input>
|
104 |
<port id="0" precision="I64">
|
|
|
111 |
<port id="3" precision="I64" />
|
112 |
</output>
|
113 |
</layer>
|
114 |
+
<layer id="13" name="Constant_24213" type="Const" version="opset1">
|
115 |
<data element_type="i64" shape="" offset="24" size="8" />
|
116 |
<output>
|
117 |
<port id="0" precision="I64" />
|
118 |
</output>
|
119 |
</layer>
|
120 |
+
<layer id="14" name="Range_24214" type="Range" version="opset4">
|
121 |
<data output_type="i32" />
|
122 |
<input>
|
123 |
<port id="0" precision="I64" />
|
|
|
130 |
</port>
|
131 |
</output>
|
132 |
</layer>
|
133 |
+
<layer id="15" name="Constant_24215" type="Const" version="opset1">
|
134 |
<data element_type="i64" shape="" offset="24" size="8" />
|
135 |
<output>
|
136 |
<port id="0" precision="I64" />
|
137 |
</output>
|
138 |
</layer>
|
139 |
+
<layer id="16" name="Constant_24216" type="Const" version="opset1">
|
140 |
<data element_type="i64" shape="" offset="24" size="8" />
|
141 |
<output>
|
142 |
<port id="0" precision="I64" />
|
143 |
</output>
|
144 |
</layer>
|
145 |
+
<layer id="17" name="Add_24217" type="Add" version="opset1">
|
146 |
<data auto_broadcast="numpy" />
|
147 |
<input>
|
148 |
<port id="0" precision="I64" />
|
|
|
152 |
<port id="2" precision="I64" />
|
153 |
</output>
|
154 |
</layer>
|
155 |
+
<layer id="18" name="Constant_24218" type="Const" version="opset1">
|
156 |
<data element_type="i64" shape="" offset="24" size="8" />
|
157 |
<output>
|
158 |
<port id="0" precision="I64" />
|
159 |
</output>
|
160 |
</layer>
|
161 |
+
<layer id="19" name="Range_24219" type="Range" version="opset4">
|
162 |
<data output_type="i32" />
|
163 |
<input>
|
164 |
<port id="0" precision="I64" />
|
|
|
171 |
</port>
|
172 |
</output>
|
173 |
</layer>
|
174 |
+
<layer id="20" name="Constant_24281" type="Const" version="opset1">
|
175 |
<data element_type="u8" shape="26479" offset="32" size="26479" />
|
176 |
<output>
|
177 |
<port id="0" precision="U8">
|
|
|
179 |
</port>
|
180 |
</output>
|
181 |
</layer>
|
182 |
+
<layer id="21" name="SpecialTokensSplit_24282" type="SpecialTokensSplit" version="extension">
|
183 |
<input>
|
184 |
<port id="0" precision="I32">
|
185 |
<dim>-1</dim>
|
|
|
221 |
</port>
|
222 |
</output>
|
223 |
</layer>
|
224 |
+
<layer id="22" name="Constant_24284" type="Const" version="opset1">
|
225 |
+
<data element_type="u8" shape="74" offset="26511" size="74" />
|
226 |
<output>
|
227 |
<port id="0" precision="U8">
|
228 |
+
<dim>74</dim>
|
229 |
</port>
|
230 |
</output>
|
231 |
</layer>
|
232 |
+
<layer id="23" name="RegexSplit_24285" type="RegexSplit" version="extension">
|
233 |
<data behaviour="isolate" invert="false" max_splits="-1" />
|
234 |
<input>
|
235 |
<port id="0" precision="I32">
|
|
|
251 |
<dim>-1</dim>
|
252 |
</port>
|
253 |
<port id="6" precision="U8">
|
254 |
+
<dim>74</dim>
|
255 |
</port>
|
256 |
</input>
|
257 |
<output>
|
|
|
275 |
</port>
|
276 |
</output>
|
277 |
</layer>
|
278 |
+
<layer id="24" name="Constant_24287" type="Const" version="opset1">
|
279 |
+
<data element_type="i32" shape="51865" offset="26585" size="207460" />
|
280 |
<output>
|
281 |
+
<port id="0" precision="I32">
|
282 |
+
<dim>51865</dim>
|
283 |
</port>
|
284 |
</output>
|
285 |
</layer>
|
286 |
+
<layer id="25" name="Constant_24289" type="Const" version="opset1">
|
287 |
+
<data element_type="i32" shape="51865" offset="234045" size="207460" />
|
|
|
|
|
|
|
|
|
|
|
288 |
<output>
|
289 |
+
<port id="0" precision="I32">
|
290 |
+
<dim>51865</dim>
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
</port>
|
292 |
</output>
|
293 |
</layer>
|
294 |
+
<layer id="26" name="Constant_24291" type="Const" version="opset1">
|
295 |
+
<data element_type="u8" shape="320780" offset="441505" size="320780" />
|
296 |
<output>
|
297 |
<port id="0" precision="U8">
|
298 |
+
<dim>320780</dim>
|
299 |
</port>
|
300 |
</output>
|
301 |
</layer>
|
302 |
+
<layer id="27" name="Constant_24299" type="Const" version="opset1">
|
303 |
+
<data element_type="i32" shape="50000" offset="762285" size="200000" />
|
|
|
|
|
|
|
|
|
|
|
304 |
<output>
|
305 |
+
<port id="0" precision="I32">
|
306 |
+
<dim>50000</dim>
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
</port>
|
308 |
</output>
|
309 |
</layer>
|
310 |
+
<layer id="28" name="Constant_24301" type="Const" version="opset1">
|
311 |
+
<data element_type="i32" shape="50000" offset="962285" size="200000" />
|
312 |
<output>
|
313 |
+
<port id="0" precision="I32">
|
314 |
+
<dim>50000</dim>
|
315 |
</port>
|
316 |
</output>
|
317 |
</layer>
|
318 |
+
<layer id="29" name="Constant_24303" type="Const" version="opset1">
|
319 |
+
<data element_type="u8" shape="169950" offset="1162285" size="169950" />
|
320 |
+
<output>
|
321 |
<port id="0" precision="U8">
|
322 |
+
<dim>169950</dim>
|
323 |
</port>
|
324 |
+
</output>
|
325 |
+
</layer>
|
326 |
+
<layer id="30" name="Constant_24305" type="Const" version="opset1">
|
327 |
+
<data element_type="i32" shape="50000" offset="1332235" size="200000" />
|
328 |
<output>
|
329 |
+
<port id="0" precision="I32">
|
330 |
+
<dim>50000</dim>
|
|
|
|
|
|
|
|
|
|
|
|
|
331 |
</port>
|
332 |
</output>
|
333 |
</layer>
|
334 |
+
<layer id="31" name="Constant_24307" type="Const" version="opset1">
|
335 |
+
<data element_type="i32" shape="50000" offset="1532235" size="200000" />
|
336 |
<output>
|
337 |
+
<port id="0" precision="I32">
|
338 |
+
<dim>50000</dim>
|
339 |
</port>
|
340 |
</output>
|
341 |
</layer>
|
342 |
+
<layer id="32" name="Constant_24309" type="Const" version="opset1">
|
343 |
+
<data element_type="u8" shape="136851" offset="1732235" size="136851" />
|
344 |
+
<output>
|
345 |
<port id="0" precision="U8">
|
346 |
+
<dim>136851</dim>
|
347 |
</port>
|
348 |
+
</output>
|
349 |
+
</layer>
|
350 |
+
<layer id="33" name="Constant_24293" type="Const" version="opset1">
|
351 |
+
<data element_type="i32" shape="1608" offset="1869086" size="6432" />
|
352 |
<output>
|
353 |
+
<port id="0" precision="I32">
|
354 |
+
<dim>1608</dim>
|
355 |
</port>
|
356 |
+
</output>
|
357 |
+
</layer>
|
358 |
+
<layer id="34" name="Constant_24295" type="Const" version="opset1">
|
359 |
+
<data element_type="i32" shape="1608" offset="1875518" size="6432" />
|
360 |
+
<output>
|
361 |
+
<port id="0" precision="I32">
|
362 |
+
<dim>1608</dim>
|
363 |
</port>
|
364 |
+
</output>
|
365 |
+
</layer>
|
366 |
+
<layer id="35" name="Constant_24297" type="Const" version="opset1">
|
367 |
+
<data element_type="u8" shape="13723" offset="1881950" size="13723" />
|
368 |
+
<output>
|
369 |
+
<port id="0" precision="U8">
|
370 |
+
<dim>13723</dim>
|
371 |
</port>
|
372 |
</output>
|
373 |
</layer>
|
374 |
+
<layer id="36" name="Constant_24310" type="Const" version="opset1">
|
375 |
+
<data element_type="i32" shape="1608" offset="1895673" size="6432" />
|
376 |
<output>
|
377 |
<port id="0" precision="I32">
|
378 |
<dim>1608</dim>
|
379 |
</port>
|
380 |
</output>
|
381 |
</layer>
|
382 |
+
<layer id="37" name="BPETokenizer_24311" type="BPETokenizer" version="extension">
|
383 |
<data unk_token="" fuse_unk="false" suffix_indicator="" end_suffix="" byte_fallback="false" cache_capacity="20000" />
|
384 |
<input>
|
385 |
<port id="0" precision="I32">
|
|
|
398 |
<dim>-1</dim>
|
399 |
</port>
|
400 |
<port id="5" precision="I32">
|
401 |
+
<dim>51865</dim>
|
402 |
</port>
|
403 |
<port id="6" precision="I32">
|
404 |
+
<dim>51865</dim>
|
405 |
</port>
|
406 |
<port id="7" precision="U8">
|
407 |
+
<dim>320780</dim>
|
408 |
</port>
|
409 |
<port id="8" precision="I32">
|
410 |
+
<dim>50000</dim>
|
411 |
</port>
|
412 |
<port id="9" precision="I32">
|
413 |
+
<dim>50000</dim>
|
414 |
</port>
|
415 |
<port id="10" precision="U8">
|
416 |
+
<dim>169950</dim>
|
417 |
</port>
|
418 |
<port id="11" precision="I32">
|
419 |
+
<dim>50000</dim>
|
420 |
</port>
|
421 |
<port id="12" precision="I32">
|
422 |
+
<dim>50000</dim>
|
423 |
</port>
|
424 |
<port id="13" precision="U8">
|
425 |
+
<dim>136851</dim>
|
426 |
</port>
|
427 |
<port id="14" precision="I32">
|
428 |
+
<dim>1608</dim>
|
429 |
</port>
|
430 |
<port id="15" precision="I32">
|
431 |
+
<dim>1608</dim>
|
432 |
</port>
|
433 |
<port id="16" precision="U8">
|
434 |
+
<dim>13723</dim>
|
435 |
</port>
|
436 |
<port id="17" precision="I32">
|
437 |
<dim>1608</dim>
|
|
|
449 |
</port>
|
450 |
</output>
|
451 |
</layer>
|
452 |
+
<layer id="38" name="Constant_24312" type="Const" version="opset1">
|
453 |
+
<data element_type="i32" shape="" offset="1902105" size="4" />
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
454 |
<output>
|
455 |
+
<port id="0" precision="I32" />
|
|
|
|
|
456 |
</output>
|
457 |
</layer>
|
458 |
+
<layer id="39" name="Constant_24314" type="Const" version="opset1">
|
459 |
+
<data element_type="u8" shape="5" offset="1902109" size="5" />
|
460 |
<output>
|
461 |
+
<port id="0" precision="U8">
|
462 |
+
<dim>5</dim>
|
463 |
+
</port>
|
464 |
</output>
|
465 |
</layer>
|
466 |
+
<layer id="40" name="Constant_24316" type="Const" version="opset1">
|
467 |
+
<data element_type="u8" shape="13" offset="1902114" size="13" />
|
|
|
|
|
|
|
|
|
|
|
|
|
468 |
<output>
|
469 |
+
<port id="0" precision="U8">
|
470 |
+
<dim>13</dim>
|
471 |
</port>
|
472 |
</output>
|
473 |
</layer>
|
474 |
+
<layer id="41" name="Truncate_24317" type="Truncate" version="extension">
|
475 |
+
<data m_num_inputs="1" />
|
476 |
<input>
|
477 |
<port id="0" precision="I32">
|
478 |
<dim>-1</dim>
|
|
|
480 |
<port id="1" precision="I32">
|
481 |
<dim>-1</dim>
|
482 |
</port>
|
483 |
+
<port id="2" precision="I32">
|
484 |
+
<dim>-1</dim>
|
485 |
+
</port>
|
486 |
+
<port id="3" precision="I32" />
|
487 |
+
<port id="4" precision="U8">
|
488 |
+
<dim>5</dim>
|
489 |
+
</port>
|
490 |
+
<port id="5" precision="U8">
|
491 |
+
<dim>13</dim>
|
492 |
+
</port>
|
493 |
</input>
|
494 |
<output>
|
495 |
+
<port id="6" precision="I32">
|
496 |
+
<dim>-1</dim>
|
497 |
+
</port>
|
498 |
+
<port id="7" precision="I32">
|
499 |
+
<dim>-1</dim>
|
500 |
+
</port>
|
501 |
+
<port id="8" precision="I32">
|
502 |
<dim>-1</dim>
|
503 |
</port>
|
504 |
</output>
|
505 |
</layer>
|
506 |
+
<layer id="42" name="Constant_24324" type="Const" version="opset1">
|
507 |
<data element_type="i32" shape="" offset="0" size="4" />
|
508 |
<output>
|
509 |
<port id="0" precision="I32" />
|
510 |
</output>
|
511 |
</layer>
|
512 |
+
<layer id="43" name="Constant_24325" type="Const" version="opset1">
|
513 |
<data element_type="i32" shape="" offset="4" size="4" />
|
514 |
<output>
|
515 |
<port id="0" precision="I32" />
|
516 |
</output>
|
517 |
</layer>
|
518 |
+
<layer id="44" name="Constant_24326" type="Const" version="opset1">
|
519 |
+
<data element_type="i32" shape="1" offset="1902127" size="4" />
|
520 |
<output>
|
521 |
<port id="0" precision="I32">
|
522 |
<dim>1</dim>
|
523 |
</port>
|
524 |
</output>
|
525 |
</layer>
|
526 |
+
<layer id="45" name="Constant_24327" type="Const" version="opset1">
|
527 |
+
<data element_type="i32" shape="4" offset="1902131" size="16" />
|
528 |
<output>
|
529 |
<port id="0" precision="I32">
|
530 |
<dim>4</dim>
|
531 |
</port>
|
532 |
</output>
|
533 |
</layer>
|
534 |
+
<layer id="46" name="CombineSegments_24328" type="CombineSegments" version="extension">
|
535 |
<input>
|
536 |
<port id="0" precision="I32" />
|
537 |
<port id="1" precision="I32" />
|
|
|
582 |
</port>
|
583 |
</output>
|
584 |
</layer>
|
585 |
+
<layer id="47" name="Subtract_24329" type="Subtract" version="opset1">
|
586 |
<data auto_broadcast="numpy" />
|
587 |
<input>
|
588 |
<port id="0" precision="I32">
|
|
|
598 |
</port>
|
599 |
</output>
|
600 |
</layer>
|
601 |
+
<layer id="48" name="Constant_24330" type="Const" version="opset1">
|
602 |
<data element_type="i32" shape="" offset="0" size="4" />
|
603 |
<output>
|
604 |
<port id="0" precision="I32" />
|
605 |
</output>
|
606 |
</layer>
|
607 |
+
<layer id="49" name="ReduceMax_24331" type="ReduceMax" version="opset1">
|
608 |
<data keep_dims="false" />
|
609 |
<input>
|
610 |
<port id="0" precision="I32">
|
|
|
616 |
<port id="2" precision="I32" />
|
617 |
</output>
|
618 |
</layer>
|
619 |
+
<layer id="50" name="Constant_24332" type="Const" version="opset1">
|
620 |
+
<data element_type="i32" shape="" offset="1902127" size="4" />
|
621 |
<output>
|
622 |
<port id="0" precision="I32" />
|
623 |
</output>
|
624 |
</layer>
|
625 |
+
<layer id="51" name="RaggedToDense_24333" type="RaggedToDense" version="extension">
|
626 |
+
<data pad_right="true" m_pad_max_length="false" />
|
627 |
<input>
|
628 |
<port id="0" precision="I32">
|
629 |
<dim>-1</dim>
|
|
|
648 |
</port>
|
649 |
</output>
|
650 |
</layer>
|
651 |
+
<layer id="52" name="Convert_24334" type="Convert" version="opset1">
|
652 |
<data destination_type="i32" />
|
653 |
<input>
|
654 |
<port id="0" precision="BOOL">
|
|
|
663 |
</port>
|
664 |
</output>
|
665 |
</layer>
|
666 |
+
<layer id="53" name="Convert_24334.0" type="Convert" version="opset1">
|
667 |
<data destination_type="i64" />
|
668 |
<input>
|
669 |
<port id="0" precision="I32">
|
|
|
678 |
</port>
|
679 |
</output>
|
680 |
</layer>
|
681 |
+
<layer id="55" name="RaggedToDense_24333.0" type="Convert" version="opset1">
|
682 |
<data destination_type="i64" />
|
683 |
<input>
|
684 |
<port id="0" precision="I32">
|
|
|
693 |
</port>
|
694 |
</output>
|
695 |
</layer>
|
696 |
+
<layer id="56" name="Result_24337" type="Result" version="opset1" output_names="input_ids">
|
697 |
<input>
|
698 |
<port id="0" precision="I64">
|
699 |
<dim>-1</dim>
|
|
|
701 |
</port>
|
702 |
</input>
|
703 |
</layer>
|
704 |
+
<layer id="54" name="Result_24339" type="Result" version="opset1" output_names="attention_mask">
|
705 |
<input>
|
706 |
<port id="0" precision="I64">
|
707 |
<dim>-1</dim>
|
|
|
712 |
</layers>
|
713 |
<edges>
|
714 |
<edge from-layer="0" from-port="0" to-layer="8" to-port="0" />
|
715 |
+
<edge from-layer="1" from-port="0" to-layer="46" to-port="0" />
|
716 |
+
<edge from-layer="2" from-port="0" to-layer="46" to-port="1" />
|
717 |
+
<edge from-layer="3" from-port="0" to-layer="46" to-port="2" />
|
718 |
+
<edge from-layer="4" from-port="0" to-layer="46" to-port="3" />
|
719 |
+
<edge from-layer="5" from-port="0" to-layer="46" to-port="4" />
|
720 |
+
<edge from-layer="6" from-port="0" to-layer="46" to-port="5" />
|
721 |
<edge from-layer="7" from-port="0" to-layer="14" to-port="0" />
|
722 |
<edge from-layer="8" from-port="1" to-layer="9" to-port="0" />
|
723 |
<edge from-layer="8" from-port="3" to-layer="21" to-port="4" />
|
|
|
726 |
<edge from-layer="9" from-port="1" to-layer="12" to-port="0" />
|
727 |
<edge from-layer="10" from-port="0" to-layer="12" to-port="1" />
|
728 |
<edge from-layer="11" from-port="0" to-layer="12" to-port="2" />
|
|
|
729 |
<edge from-layer="12" from-port="3" to-layer="17" to-port="0" />
|
730 |
+
<edge from-layer="12" from-port="3" to-layer="14" to-port="1" />
|
731 |
<edge from-layer="13" from-port="0" to-layer="14" to-port="2" />
|
732 |
<edge from-layer="14" from-port="3" to-layer="21" to-port="0" />
|
733 |
<edge from-layer="15" from-port="0" to-layer="19" to-port="0" />
|
|
|
736 |
<edge from-layer="18" from-port="0" to-layer="19" to-port="2" />
|
737 |
<edge from-layer="19" from-port="3" to-layer="21" to-port="1" />
|
738 |
<edge from-layer="20" from-port="0" to-layer="21" to-port="5" />
|
739 |
+
<edge from-layer="21" from-port="6" to-layer="23" to-port="0" />
|
740 |
<edge from-layer="21" from-port="7" to-layer="23" to-port="1" />
|
741 |
<edge from-layer="21" from-port="8" to-layer="23" to-port="2" />
|
742 |
<edge from-layer="21" from-port="9" to-layer="23" to-port="3" />
|
743 |
<edge from-layer="21" from-port="10" to-layer="23" to-port="4" />
|
744 |
<edge from-layer="21" from-port="11" to-layer="23" to-port="5" />
|
|
|
745 |
<edge from-layer="22" from-port="0" to-layer="23" to-port="6" />
|
746 |
+
<edge from-layer="23" from-port="9" to-layer="37" to-port="2" />
|
747 |
+
<edge from-layer="23" from-port="11" to-layer="37" to-port="4" />
|
748 |
+
<edge from-layer="23" from-port="10" to-layer="37" to-port="3" />
|
749 |
+
<edge from-layer="23" from-port="8" to-layer="37" to-port="1" />
|
750 |
+
<edge from-layer="23" from-port="7" to-layer="37" to-port="0" />
|
751 |
+
<edge from-layer="24" from-port="0" to-layer="37" to-port="5" />
|
752 |
+
<edge from-layer="25" from-port="0" to-layer="37" to-port="6" />
|
753 |
+
<edge from-layer="26" from-port="0" to-layer="37" to-port="7" />
|
754 |
+
<edge from-layer="27" from-port="0" to-layer="37" to-port="8" />
|
755 |
+
<edge from-layer="28" from-port="0" to-layer="37" to-port="9" />
|
756 |
+
<edge from-layer="29" from-port="0" to-layer="37" to-port="10" />
|
757 |
+
<edge from-layer="30" from-port="0" to-layer="37" to-port="11" />
|
758 |
+
<edge from-layer="31" from-port="0" to-layer="37" to-port="12" />
|
759 |
+
<edge from-layer="32" from-port="0" to-layer="37" to-port="13" />
|
760 |
+
<edge from-layer="33" from-port="0" to-layer="37" to-port="14" />
|
761 |
+
<edge from-layer="34" from-port="0" to-layer="37" to-port="15" />
|
762 |
+
<edge from-layer="35" from-port="0" to-layer="37" to-port="16" />
|
763 |
+
<edge from-layer="36" from-port="0" to-layer="37" to-port="17" />
|
764 |
+
<edge from-layer="37" from-port="19" to-layer="41" to-port="1" />
|
765 |
+
<edge from-layer="37" from-port="18" to-layer="41" to-port="0" />
|
766 |
+
<edge from-layer="37" from-port="20" to-layer="41" to-port="2" />
|
767 |
+
<edge from-layer="38" from-port="0" to-layer="41" to-port="3" />
|
768 |
+
<edge from-layer="39" from-port="0" to-layer="41" to-port="4" />
|
769 |
+
<edge from-layer="40" from-port="0" to-layer="41" to-port="5" />
|
770 |
+
<edge from-layer="41" from-port="6" to-layer="46" to-port="6" />
|
771 |
+
<edge from-layer="41" from-port="7" to-layer="46" to-port="7" />
|
772 |
+
<edge from-layer="41" from-port="8" to-layer="46" to-port="8" />
|
773 |
+
<edge from-layer="42" from-port="0" to-layer="46" to-port="9" />
|
774 |
+
<edge from-layer="43" from-port="0" to-layer="46" to-port="10" />
|
775 |
+
<edge from-layer="44" from-port="0" to-layer="46" to-port="11" />
|
776 |
+
<edge from-layer="45" from-port="0" to-layer="46" to-port="12" />
|
777 |
+
<edge from-layer="46" from-port="14" to-layer="47" to-port="0" />
|
778 |
+
<edge from-layer="46" from-port="13" to-layer="47" to-port="1" />
|
779 |
+
<edge from-layer="46" from-port="13" to-layer="51" to-port="0" />
|
780 |
+
<edge from-layer="46" from-port="14" to-layer="51" to-port="1" />
|
781 |
+
<edge from-layer="46" from-port="15" to-layer="51" to-port="2" />
|
782 |
+
<edge from-layer="47" from-port="2" to-layer="49" to-port="0" />
|
783 |
+
<edge from-layer="48" from-port="0" to-layer="49" to-port="1" />
|
784 |
+
<edge from-layer="49" from-port="2" to-layer="51" to-port="3" />
|
785 |
+
<edge from-layer="50" from-port="0" to-layer="51" to-port="4" />
|
786 |
+
<edge from-layer="51" from-port="6" to-layer="52" to-port="0" />
|
787 |
+
<edge from-layer="51" from-port="5" to-layer="55" to-port="0" />
|
788 |
+
<edge from-layer="52" from-port="1" to-layer="53" to-port="0" />
|
789 |
+
<edge from-layer="53" from-port="1" to-layer="54" to-port="0" />
|
790 |
+
<edge from-layer="55" from-port="1" to-layer="56" to-port="0" />
|
|
|
|
|
|
|
|
|
791 |
</edges>
|
792 |
<rt_info>
|
793 |
<add_attention_mask value="True" />
|
|
|
798 |
<detokenizer_input_type value="i64" />
|
799 |
<eos_token_id value="50257" />
|
800 |
<handle_special_tokens_with_re />
|
801 |
+
<max_length />
|
802 |
<number_of_inputs value="1" />
|
803 |
+
<openvino_tokenizers_version value="2025.2.0.0-565-130827ab189" />
|
804 |
+
<openvino_version value="2025.2.0-19120-87425bc78ca-releases/2025/2" />
|
805 |
+
<original_post_processor_template value="{"type": "TemplateProcessing", "single": [{"SpecialToken": {"id": "<|startoftranscript|>", "type_id": 0}}, {"SpecialToken": {"id": "<|notimestamps|>", "type_id": 0}}, {"Sequence": {"id": "A", "type_id": 0}}, {"SpecialToken": {"id": "<|endoftext|>", "type_id": 0}}], "pair": [{"SpecialToken": {"id": "<|startoftranscript|>", "type_id": 0}}, {"SpecialToken": {"id": "<|notimestamps|>", "type_id": 0}}, {"Sequence": {"id": "A", "type_id": 0}}, {"Sequence": {"id": "B", "type_id": 1}}, {"SpecialToken": {"id": "<|endoftext|>", "type_id": 1}}], "special_tokens": {"<|endoftext|>": {"id": "<|endoftext|>", "ids": [50257], "tokens": ["<|endoftext|>"]}, "<|notimestamps|>": {"id": "<|notimestamps|>", "ids": [50363], "tokens": ["<|notimestamps|>"]}, "<|startoftranscript|>": {"id": "<|startoftranscript|>", "ids": [50258], "tokens": ["<|startoftranscript|>"]}}}" />
|
806 |
<original_tokenizer_class value="<class 'transformers.models.whisper.tokenization_whisper_fast.WhisperTokenizerFast'>" />
|
807 |
<pad_token_id value="50257" />
|
808 |
+
<processed_post_processor_template value="{"single": {"ids": [50258, 50363, -1, 50257], "type_ids": [0, 0, 0, 0]}, "pair": {"ids": [50258, 50363, -1, -2, 50257], "type_ids": [0, 0, 0, 1, 1]}}" />
|
809 |
<skip_special_tokens value="True" />
|
810 |
<streaming_detokenizer value="False" />
|
|
|
811 |
<tokenizer_output_type value="i64" />
|
812 |
+
<tokenizers_version value="0.21.1" />
|
813 |
+
<transformers_version value="4.51.3" />
|
814 |
<use_max_padding value="False" />
|
815 |
<use_sentencepiece_backend value="False" />
|
816 |
+
<utf8_replace_mode value="replace" />
|
817 |
<with_detokenizer value="True" />
|
818 |
</rt_info>
|
819 |
</net>
|
preprocessor_config.json
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
{
|
2 |
"chunk_length": 30,
|
|
|
3 |
"feature_extractor_type": "WhisperFeatureExtractor",
|
4 |
"feature_size": 80,
|
5 |
"hop_length": 160,
|
|
|
1 |
{
|
2 |
"chunk_length": 30,
|
3 |
+
"dither": 0.0,
|
4 |
"feature_extractor_type": "WhisperFeatureExtractor",
|
5 |
"feature_size": 80,
|
6 |
"hop_length": 160,
|
tokenizer_config.json
CHANGED
@@ -12980,6 +12980,7 @@
|
|
12980 |
"clean_up_tokenization_spaces": true,
|
12981 |
"eos_token": "<|endoftext|>",
|
12982 |
"errors": "replace",
|
|
|
12983 |
"model_max_length": 1024,
|
12984 |
"pad_token": "<|endoftext|>",
|
12985 |
"processor_class": "WhisperProcessor",
|
|
|
12980 |
"clean_up_tokenization_spaces": true,
|
12981 |
"eos_token": "<|endoftext|>",
|
12982 |
"errors": "replace",
|
12983 |
+
"extra_special_tokens": {},
|
12984 |
"model_max_length": 1024,
|
12985 |
"pad_token": "<|endoftext|>",
|
12986 |
"processor_class": "WhisperProcessor",
|