|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch LLaMA model."""
|
|
import math
|
|
import numpy as np
|
|
from typing import List, Optional, Tuple, Union
|
|
import scipy as sp
|
|
|
|
import torch
|
|
import torch.utils.checkpoint
|
|
from torch import nn
|
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
|
import torch.nn.functional as F
|
|
|
|
from transformers.activations import ACT2FN
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast, MoEModelOutputWithPastAndCrossAttentions, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
|
from transformers.modeling_utils import PreTrainedModel
|
|
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
|
from transformers.models.llama.configuration_llama import LlamaConfig
|
|
from functools import partial
|
|
from torch.nn.modules._functions import SyncBatchNorm as sync_batch_norm
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
_CONFIG_FOR_DOC = "LlamaConfig"
|
|
|
|
|
|
|
|
def _make_causal_mask(
|
|
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
|
):
|
|
"""
|
|
Make causal mask used for bi-directional self-attention.
|
|
"""
|
|
bsz, tgt_len = input_ids_shape
|
|
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
|
|
mask_cond = torch.arange(mask.size(-1), device=device)
|
|
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
|
mask = mask.to(dtype)
|
|
|
|
if past_key_values_length > 0:
|
|
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
|
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
|
|
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
|
"""
|
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
|
"""
|
|
bsz, src_len = mask.size()
|
|
tgt_len = tgt_len if tgt_len is not None else src_len
|
|
|
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
|
|
|
inverted_mask = 1.0 - expanded_mask
|
|
|
|
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
|
|
|
|
|
class LlamaRMSNorm(nn.Module):
|
|
def __init__(self, hidden_size, eps=1e-6):
|
|
"""
|
|
LlamaRMSNorm is equivalent to T5LayerNorm
|
|
"""
|
|
super().__init__()
|
|
self.weight = nn.Parameter(torch.ones(hidden_size))
|
|
self.variance_epsilon = eps
|
|
|
|
def forward(self, hidden_states, pad_mask=None):
|
|
input_dtype = hidden_states.dtype
|
|
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
|
|
|
return (self.weight * hidden_states).to(input_dtype)
|
|
|
|
|
|
class MaskSyncBatchNorm(nn.Module):
|
|
"""
|
|
An implementation of masked batch normalization, used for testing the numerical
|
|
stability.
|
|
"""
|
|
|
|
def __init__(self, num_features, eps=1e-5, momentum=0.1, \
|
|
affine=True, track_running_stats=True, sync_bn=True, process_group=None):
|
|
super().__init__()
|
|
|
|
self.num_features = num_features
|
|
self.eps = eps
|
|
self.momentum = momentum
|
|
self.affine = affine
|
|
self.track_running_stats = track_running_stats
|
|
if self.affine:
|
|
self.weight = nn.Parameter(torch.Tensor(num_features))
|
|
self.bias = nn.Parameter(torch.Tensor(num_features))
|
|
else:
|
|
self.register_parameter('weight', None)
|
|
self.register_parameter('bias', None)
|
|
if self.track_running_stats:
|
|
self.register_buffer('running_mean', torch.zeros(num_features))
|
|
self.register_buffer('running_var', torch.ones(num_features))
|
|
self.register_buffer('num_batches_tracked', torch.tensor(0, dtype=torch.long))
|
|
else:
|
|
self.register_parameter('running_mean', None)
|
|
self.register_parameter('running_var', None)
|
|
self.register_parameter('num_batches_tracked', None)
|
|
self.sync_bn = sync_bn
|
|
|
|
|
|
self.process_group = process_group
|
|
self.ddp_gpu_size = 4
|
|
|
|
self.reset_parameters()
|
|
|
|
def _specify_ddp_gpu_num(self, gpu_size):
|
|
if gpu_size > 1:
|
|
raise ValueError('SyncBatchNorm is only supported for DDP with single GPU per process')
|
|
self.ddp_gpu_size = gpu_size
|
|
|
|
def reset_running_stats(self):
|
|
if self.track_running_stats:
|
|
self.running_mean.zero_()
|
|
self.running_var.fill_(1)
|
|
self.num_batches_tracked.zero_()
|
|
|
|
def reset_parameters(self):
|
|
self.reset_running_stats()
|
|
if self.affine:
|
|
|
|
nn.init.zeros_(self.weight)
|
|
nn.init.zeros_(self.bias)
|
|
|
|
def extra_repr(self):
|
|
return '{num_features}, eps={eps}, momentum={momentum}, affine={affine}, ' \
|
|
'track_running_stats={track_running_stats}'.format(**self.__dict__)
|
|
|
|
def forward(self, input, pad_mask=None, is_encoder=False, update_run=True):
|
|
"""
|
|
input: B x C x T
|
|
pad_mask: B x T (padding is False)
|
|
"""
|
|
input_dtype = input.dtype
|
|
input = input.to(torch.float32)
|
|
shaped_input = (len(input.shape) == 2)
|
|
if shaped_input:
|
|
input = input.unsqueeze(0)
|
|
|
|
B, T, C = input.shape
|
|
|
|
if pad_mask is None or not self.training:
|
|
mask_input = input.contiguous().view(-1, C)
|
|
else:
|
|
bn_mask = (pad_mask == 1)
|
|
mask_input = input[bn_mask, :]
|
|
mask_input = mask_input.contiguous().view(-1, C)
|
|
|
|
if self.momentum is None:
|
|
exponential_average_factor = 0.0
|
|
else:
|
|
exponential_average_factor = self.momentum
|
|
|
|
if self.training and self.track_running_stats:
|
|
self.num_batches_tracked += 1
|
|
if self.momentum is None:
|
|
exponential_average_factor = 1.0 / self.num_batches_tracked.item()
|
|
else:
|
|
exponential_average_factor = self.momentum
|
|
|
|
if not update_run:
|
|
exponential_average_factor = 0.0
|
|
|
|
mean_copy = self.running_mean.clone()
|
|
var_copy = self.running_var.clone()
|
|
flag = False
|
|
flag_mean = mask_input.mean(0)
|
|
if torch.isnan(flag_mean).any() and self.training:
|
|
exponential_average_factor = 0.0
|
|
flag = True
|
|
|
|
|
|
need_sync = self.training and self.sync_bn
|
|
if need_sync:
|
|
process_group = torch.distributed.group.WORLD
|
|
if self.process_group:
|
|
process_group = self.process_group
|
|
world_size = torch.distributed.get_world_size(process_group)
|
|
need_sync = world_size > 1
|
|
|
|
if torch.isnan(self.running_var).any() and self.training:
|
|
exponential_average_factor = 1.0
|
|
self.running_mean = torch.nan_to_num(self.running_mean)
|
|
self.running_var = torch.nan_to_num(self.running_var)
|
|
|
|
if not need_sync:
|
|
z = F.batch_norm(
|
|
mask_input.to(torch.float32), self.running_mean.to(torch.float32), self.running_var.to(torch.float32), self.weight.to(torch.float32), self.bias.to(torch.float32),
|
|
self.training or not self.track_running_stats,
|
|
exponential_average_factor, self.eps)
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
z = sync_batch_norm.apply(
|
|
mask_input.to(torch.float32), self.weight.to(torch.float32), self.bias.to(torch.float32), self.running_mean.to(torch.float32), self.running_var.to(torch.float32),
|
|
self.eps, exponential_average_factor, process_group, world_size)
|
|
|
|
if flag:
|
|
self.running_mean = mean_copy
|
|
self.running_var = var_copy
|
|
|
|
if pad_mask is None or not self.training:
|
|
output = z
|
|
else:
|
|
output = input.clone()
|
|
output[bn_mask, :] = z
|
|
|
|
output = output.view(B, T, C)
|
|
|
|
if shaped_input:
|
|
output = output.squeeze(0)
|
|
return output.to(input_dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class RepBN(nn.Module):
|
|
def __init__(self, channels, eps=1e-5):
|
|
super(RepBN, self).__init__()
|
|
self.alpha = nn.Parameter(torch.zeros(1))
|
|
self.bn = nn.BatchNorm1d(channels, eps=eps, momentum=0.1)
|
|
self.reset_parameters()
|
|
|
|
def reset_parameters(self):
|
|
|
|
nn.init.zeros_(self.bn.weight)
|
|
nn.init.zeros_(self.bn.bias)
|
|
|
|
def forward(self, x, pad_mask=None):
|
|
B, T, C = x.shape
|
|
|
|
if pad_mask is None or not self.training:
|
|
mask_input = x.contiguous().view(-1, C)
|
|
else:
|
|
bn_mask = (pad_mask == 1)
|
|
mask_input = x[bn_mask, :]
|
|
mask_input = mask_input.contiguous().view(-1, C)
|
|
|
|
o_bn = self.bn(mask_input)
|
|
|
|
if pad_mask is None or not self.training:
|
|
output = o_bn.view(B, T, C)
|
|
else:
|
|
output = x.clone()
|
|
output[bn_mask, :] = o_bn
|
|
|
|
x = output + self.alpha * x
|
|
return x
|
|
|
|
|
|
class LinearNorm(nn.Module):
|
|
def __init__(self, dim, norm1, norm2, eps=1e-5, warm=10000, step=18000, r0=1.0):
|
|
super(LinearNorm, self).__init__()
|
|
self.register_buffer('num_step', torch.tensor(0))
|
|
self.register_buffer('warm', torch.tensor(warm))
|
|
self.register_buffer('iter', torch.tensor(step))
|
|
self.register_buffer('total_step', torch.tensor(step))
|
|
self.r0 = r0
|
|
self.norm1 = norm1(dim, eps)
|
|
self.norm2 = norm2(dim, eps)
|
|
|
|
def forward(self, x, pad_mask=None):
|
|
if self.training:
|
|
if self.warm > 0:
|
|
if self.num_step % 16 == 0:
|
|
self.warm.copy_(self.warm - 1)
|
|
x = self.norm1(x)
|
|
else:
|
|
lamda = self.r0 * self.iter / self.total_step
|
|
if self.iter > 0:
|
|
if self.num_step % 16 == 0:
|
|
self.iter.copy_(self.iter - 1)
|
|
x1 = self.norm1(x)
|
|
x2 = self.norm2(x, pad_mask)
|
|
x = lamda * x1 + (1 - lamda) * x2
|
|
self.num_step.copy_((self.num_step + 1) % 16)
|
|
else:
|
|
x = self.norm2(x, pad_mask)
|
|
return x
|
|
|
|
|
|
linearnorm = partial(LinearNorm, norm1=LlamaRMSNorm, norm2=RepBN)
|
|
|
|
|
|
|
|
|
|
class LlamaRotaryEmbedding(torch.nn.Module):
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
|
super().__init__()
|
|
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
|
self.register_buffer("inv_freq", inv_freq)
|
|
|
|
|
|
self.max_seq_len_cached = max_position_embeddings
|
|
|
|
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32)
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
|
|
|
emb = torch.cat((freqs, freqs), dim=-1)
|
|
dtype = torch.get_default_dtype()
|
|
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
|
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
|
|
|
def forward(self, x, seq_len=None):
|
|
|
|
|
|
if seq_len > self.max_seq_len_cached:
|
|
self.max_seq_len_cached = seq_len
|
|
|
|
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32)
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
|
|
|
|
|
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
|
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(x.dtype), persistent=False)
|
|
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(x.dtype), persistent=False)
|
|
return (
|
|
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
|
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
|
)
|
|
|
|
|
|
def rotate_half(x):
|
|
"""Rotates half the hidden dims of the input."""
|
|
x1 = x[..., : x.shape[-1] // 2]
|
|
x2 = x[..., x.shape[-1] // 2 :]
|
|
return torch.cat((-x2, x1), dim=-1)
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
|
|
|
cos = cos.squeeze(1).squeeze(0)
|
|
sin = sin.squeeze(1).squeeze(0)
|
|
cos = cos[position_ids].unsqueeze(1)
|
|
sin = sin[position_ids].unsqueeze(1)
|
|
q_embed = (q * cos) + (rotate_half(q) * sin)
|
|
k_embed = (k * cos) + (rotate_half(k) * sin)
|
|
return q_embed, k_embed
|
|
|
|
|
|
class LlamaMLP(nn.Module):
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
intermediate_size: int,
|
|
hidden_act: str,
|
|
):
|
|
super().__init__()
|
|
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=True)
|
|
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
|
|
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=True)
|
|
self.act_fn = ACT2FN[hidden_act]
|
|
|
|
def forward(self, x):
|
|
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
|
|
|
|
|
class LlamaAttention(nn.Module):
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
|
|
def __init__(self, config: LlamaConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
self.hidden_size = config.hidden_size
|
|
self.num_heads = config.num_attention_heads
|
|
self.head_dim = self.hidden_size // self.num_heads
|
|
self.max_position_embeddings = config.max_position_embeddings
|
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size:
|
|
raise ValueError(
|
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
|
f" and `num_heads`: {self.num_heads})."
|
|
)
|
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
|
|
self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
|
|
self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
|
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
|
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
|
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
|
output_attentions: bool = False,
|
|
use_cache: bool = False,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
|
|
kv_seq_len = key_states.shape[-2]
|
|
if past_key_value is not None:
|
|
kv_seq_len += past_key_value[0].shape[-2]
|
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
|
|
|
|
|
if past_key_value is not None:
|
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
|
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
|
|
|
past_key_value = (key_states, value_states) if use_cache else None
|
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
|
|
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
|
raise ValueError(
|
|
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
|
f" {attn_weights.size()}"
|
|
)
|
|
|
|
if attention_mask is not None:
|
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
|
raise ValueError(
|
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
|
)
|
|
attn_weights = attn_weights + attention_mask
|
|
attn_weights = torch.max(
|
|
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device)
|
|
)
|
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
|
|
|
attn_output = torch.matmul(attn_weights, value_states)
|
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
|
raise ValueError(
|
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
|
f" {attn_output.size()}"
|
|
)
|
|
|
|
attn_output = attn_output.transpose(1, 2)
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
|
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
if not output_attentions:
|
|
attn_weights = None
|
|
|
|
return attn_output, attn_weights, past_key_value
|
|
|
|
|
|
class LlamaDecoderLayer(nn.Module):
|
|
def __init__(self, config: LlamaConfig):
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
self.intermediate_size=config.intermediate_size
|
|
self.self_attn = LlamaAttention(config=config)
|
|
self.mlp = LlamaMLP(
|
|
hidden_size=self.hidden_size,
|
|
intermediate_size=config.intermediate_size,
|
|
hidden_act=config.hidden_act,
|
|
)
|
|
|
|
|
|
|
|
|
|
self.input_layernorm = nn.Identity()
|
|
self.post_attention_layernorm = nn.Identity()
|
|
|
|
def merge_bn(self):
|
|
|
|
miu = self.input_layernorm.norm2.bn.running_mean
|
|
sigma2 = self.input_layernorm.norm2.bn.running_var
|
|
gamma = self.input_layernorm.norm2.bn.weight
|
|
beta = self.input_layernorm.norm2.bn.bias
|
|
eps = self.input_layernorm.norm2.bn.eps
|
|
alpha = self.input_layernorm.norm2.alpha
|
|
|
|
w_q = self.self_attn.q_proj.weight.data.transpose(0, 1)
|
|
w_k = self.self_attn.k_proj.weight.data.transpose(0, 1)
|
|
w_v = self.self_attn.v_proj.weight.data.transpose(0, 1)
|
|
|
|
self.self_attn.q_proj = nn.Linear(self.self_attn.hidden_size, self.self_attn.num_heads * self.self_attn.head_dim, bias=True).to(w_q.device)
|
|
self.self_attn.k_proj = nn.Linear(self.self_attn.hidden_size, self.self_attn.num_heads * self.self_attn.head_dim, bias=True).to(w_q.device)
|
|
self.self_attn.v_proj = nn.Linear(self.self_attn.hidden_size, self.self_attn.num_heads * self.self_attn.head_dim, bias=True).to(w_q.device)
|
|
|
|
a = gamma / torch.sqrt(sigma2 + eps) + alpha
|
|
b = beta - gamma * miu / torch.sqrt(sigma2 + eps)
|
|
a = torch.diag(a)
|
|
|
|
w_q_n = (a @ w_q).transpose(0, 1)
|
|
b_q_n = (b.unsqueeze(0) @ w_q).squeeze(0)
|
|
self.self_attn.q_proj.weight.data.copy_(w_q_n)
|
|
self.self_attn.q_proj.bias.data.copy_(b_q_n)
|
|
w_k_n = (a @ w_k).transpose(0, 1)
|
|
b_k_n = (b.unsqueeze(0) @ w_k).squeeze(0)
|
|
self.self_attn.k_proj.weight.data.copy_(w_k_n)
|
|
self.self_attn.k_proj.bias.data.copy_(b_k_n)
|
|
w_v_n = (a @ w_v).transpose(0, 1)
|
|
b_v_n = (b.unsqueeze(0) @ w_v).squeeze(0)
|
|
self.self_attn.v_proj.weight.data.copy_(w_v_n)
|
|
self.self_attn.v_proj.bias.data.copy_(b_v_n)
|
|
self.input_layernorm = nn.Identity()
|
|
|
|
|
|
miu = self.post_attention_layernorm.norm2.bn.running_mean
|
|
sigma2 = self.post_attention_layernorm.norm2.bn.running_var
|
|
gamma = self.post_attention_layernorm.norm2.bn.weight
|
|
beta = self.post_attention_layernorm.norm2.bn.bias
|
|
eps = self.post_attention_layernorm.norm2.bn.eps
|
|
alpha = self.post_attention_layernorm.norm2.alpha
|
|
|
|
w_g = self.mlp.gate_proj.weight.data.transpose(0, 1)
|
|
w_u = self.mlp.up_proj.weight.data.transpose(0, 1)
|
|
|
|
self.mlp.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=True)
|
|
self.mlp.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=True)
|
|
|
|
a = gamma / torch.sqrt(sigma2 + eps) + alpha
|
|
b = beta - gamma * miu / torch.sqrt(sigma2 + eps)
|
|
a = torch.diag(a)
|
|
|
|
w_g_n = (a @ w_g).transpose(0, 1)
|
|
b_g_n = (b.unsqueeze(0) @ w_g).squeeze(0)
|
|
self.mlp.gate_proj.weight.data.copy_(w_g_n)
|
|
self.mlp.gate_proj.bias.data.copy_(b_g_n)
|
|
w_u_n = (a @ w_u).transpose(0, 1)
|
|
b_u_n = (b.unsqueeze(0) @ w_u).squeeze(0)
|
|
self.mlp.up_proj.weight.data.copy_(w_u_n)
|
|
self.mlp.up_proj.bias.data.copy_(b_u_n)
|
|
self.post_attention_layernorm = nn.Identity()
|
|
return
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
pad_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
|
output_attentions: Optional[bool] = False,
|
|
use_cache: Optional[bool] = False,
|
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
|
"""
|
|
Args:
|
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
|
returned tensors for more detail.
|
|
use_cache (`bool`, *optional*):
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
|
(see `past_key_values`).
|
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
|
"""
|
|
|
|
residual = hidden_states
|
|
|
|
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
|
hidden_states=hidden_states,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_value,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
)
|
|
hidden_states = residual + hidden_states
|
|
|
|
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
hidden_states = self.mlp(hidden_states)
|
|
hidden_states = residual + hidden_states
|
|
|
|
outputs = (hidden_states,)
|
|
|
|
if output_attentions:
|
|
outputs += (self_attn_weights,)
|
|
|
|
if use_cache:
|
|
outputs += (present_key_value,)
|
|
|
|
return outputs
|
|
|
|
|
|
LLAMA_START_DOCSTRING = r"""
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
|
etc.)
|
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
|
and behavior.
|
|
|
|
Parameters:
|
|
config ([`LlamaConfig`]):
|
|
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
|
load the weights associated with the model, only the configuration. Check out the
|
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
|
"""
|
|
|
|
|
|
@add_start_docstrings(
|
|
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
|
LLAMA_START_DOCSTRING,
|
|
)
|
|
class LlamaPreTrainedModel(PreTrainedModel):
|
|
config_class = LlamaConfig
|
|
base_model_prefix = "model"
|
|
supports_gradient_checkpointing = True
|
|
_no_split_modules = ["LlamaDecoderLayer"]
|
|
_skip_keys_device_placement = "past_key_values"
|
|
|
|
def _init_weights(self, module):
|
|
std = self.config.initializer_range
|
|
if isinstance(module, nn.Linear):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.bias is not None:
|
|
module.bias.data.zero_()
|
|
elif isinstance(module, nn.Embedding):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.padding_idx is not None:
|
|
module.weight.data[module.padding_idx].zero_()
|
|
|
|
def _set_gradient_checkpointing(self, module, value=False):
|
|
if isinstance(module, LlamaModel):
|
|
module.gradient_checkpointing = value
|
|
|
|
|
|
LLAMA_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
|
it.
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
[What are input IDs?](../glossary#input-ids)
|
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
|
`past_key_values`).
|
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
|
information on the default strategy.
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
- 0 indicates the head is **masked**.
|
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
|
config.n_positions - 1]`.
|
|
|
|
[What are position IDs?](../glossary#position-ids)
|
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
|
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
|
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
|
model's internal embedding lookup matrix.
|
|
use_cache (`bool`, *optional*):
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
|
`past_key_values`).
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
|
tensors for more detail.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
|
more detail.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
"""
|
|
|
|
|
|
@add_start_docstrings(
|
|
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
|
LLAMA_START_DOCSTRING,
|
|
)
|
|
class LlamaModel(LlamaPreTrainedModel):
|
|
"""
|
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
|
|
|
Args:
|
|
config: LlamaConfig
|
|
"""
|
|
|
|
def __init__(self, config: LlamaConfig):
|
|
super().__init__(config)
|
|
self.padding_idx = config.pad_token_id
|
|
self.vocab_size = config.vocab_size
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
|
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
|
|
|
self.norm = linearnorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.embed_tokens = value
|
|
|
|
|
|
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
|
|
|
|
|
combined_attention_mask = None
|
|
if input_shape[-1] > 1:
|
|
combined_attention_mask = _make_causal_mask(
|
|
input_shape,
|
|
inputs_embeds.dtype,
|
|
device=inputs_embeds.device,
|
|
past_key_values_length=past_key_values_length,
|
|
)
|
|
if attention_mask is not None:
|
|
|
|
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
|
inputs_embeds.device
|
|
)
|
|
combined_attention_mask = (
|
|
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
|
)
|
|
|
|
return combined_attention_mask
|
|
|
|
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
|
elif input_ids is not None:
|
|
batch_size, seq_length = input_ids.shape
|
|
elif inputs_embeds is not None:
|
|
batch_size, seq_length, _ = inputs_embeds.shape
|
|
else:
|
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
|
|
|
seq_length_with_past = seq_length
|
|
past_key_values_length = 0
|
|
|
|
if past_key_values is not None:
|
|
past_key_values_length = past_key_values[0][0].shape[2]
|
|
seq_length_with_past = seq_length_with_past + past_key_values_length
|
|
|
|
if position_ids is None:
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
position_ids = torch.arange(
|
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
|
)
|
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
|
else:
|
|
position_ids = position_ids.view(-1, seq_length).long()
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
|
|
if attention_mask is None:
|
|
attention_mask = torch.ones(
|
|
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
|
)
|
|
pad_mask = attention_mask
|
|
attention_mask = self._prepare_decoder_attention_mask(
|
|
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
|
)
|
|
|
|
hidden_states = inputs_embeds
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
if use_cache:
|
|
logger.warning_once(
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
|
)
|
|
use_cache = False
|
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attns = () if output_attentions else None
|
|
next_decoder_cache = () if use_cache else None
|
|
|
|
for idx, decoder_layer in enumerate(self.layers):
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
|
|
def create_custom_forward(module):
|
|
def custom_forward(*inputs):
|
|
|
|
return module(*inputs, output_attentions, None)
|
|
|
|
return custom_forward
|
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(decoder_layer),
|
|
hidden_states,
|
|
attention_mask,
|
|
pad_mask,
|
|
position_ids,
|
|
None,
|
|
)
|
|
else:
|
|
layer_outputs = decoder_layer(
|
|
hidden_states,
|
|
attention_mask=attention_mask,
|
|
pad_mask=pad_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_value,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if use_cache:
|
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
|
|
|
if output_attentions:
|
|
all_self_attns += (layer_outputs[1],)
|
|
|
|
hidden_states = self.norm(hidden_states, pad_mask)
|
|
|
|
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
next_cache = next_decoder_cache if use_cache else None
|
|
if not return_dict:
|
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
|
return BaseModelOutputWithPast(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=next_cache,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attns,
|
|
)
|
|
|
|
|
|
class LlamaForCausalLM(LlamaPreTrainedModel):
|
|
_tied_weights_keys = ["lm_head.weight"]
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.model = LlamaModel(config)
|
|
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
|
|
|
|
self.post_init()
|
|
|
|
def compress(self):
|
|
for name, module in self.model.named_modules():
|
|
if isinstance(module, LlamaAttention):
|
|
module.compress()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.model.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.model.embed_tokens = value
|
|
|
|
def get_output_embeddings(self):
|
|
return self.lm_head
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
self.lm_head = new_embeddings
|
|
|
|
def set_decoder(self, decoder):
|
|
self.model = decoder
|
|
|
|
def get_decoder(self):
|
|
return self.model
|
|
|
|
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
r"""
|
|
Args:
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
|
Returns:
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
|
|
|
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
|
>>> # Generate
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
```"""
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
outputs = self.model(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
hidden_states = outputs[0]
|
|
logits = self.lm_head(hidden_states)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
|
|
shift_logits = logits[..., :-1, :].contiguous()
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
|
|
loss_fct = CrossEntropyLoss()
|
|
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
shift_labels = shift_labels.view(-1)
|
|
|
|
shift_labels = shift_labels.to(shift_logits.device)
|
|
loss = loss_fct(shift_logits, shift_labels)
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[1:]
|
|
return (loss,) + output if loss is not None else output
|
|
|
|
return CausalLMOutputWithPast(
|
|
loss=loss,
|
|
logits=logits,
|
|
past_key_values=outputs.past_key_values,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
def prepare_inputs_for_generation(
|
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
|
):
|
|
if past_key_values:
|
|
input_ids = input_ids[:, -1:]
|
|
|
|
position_ids = kwargs.get("position_ids", None)
|
|
if attention_mask is not None and position_ids is None:
|
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1
|
|
position_ids.masked_fill_(attention_mask == 0, 1)
|
|
if past_key_values:
|
|
position_ids = position_ids[:, -1].unsqueeze(-1)
|
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None:
|
|
model_inputs = {"inputs_embeds": inputs_embeds}
|
|
else:
|
|
model_inputs = {"input_ids": input_ids}
|
|
|
|
model_inputs.update(
|
|
{
|
|
"position_ids": position_ids,
|
|
"past_key_values": past_key_values,
|
|
"use_cache": kwargs.get("use_cache"),
|
|
"attention_mask": attention_mask,
|
|
}
|
|
)
|
|
return model_inputs
|
|
|
|
@staticmethod
|
|
def _reorder_cache(past_key_values, beam_idx):
|
|
reordered_past = ()
|
|
for layer_past in past_key_values:
|
|
reordered_past += (
|
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
|
)
|
|
return reordered_past
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
The LLaMa Model transformer with a sequence classification head on top (linear layer).
|
|
|
|
[`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
|
(e.g. GPT-2) do.
|
|
|
|
Since it does classification on the last token, it requires to know the position of the last token. If a
|
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
|
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
|
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
|
each row of the batch).
|
|
""",
|
|
LLAMA_START_DOCSTRING,
|
|
)
|
|
class LlamaForSequenceClassification(LlamaPreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.num_labels = config.num_labels
|
|
self.model = LlamaModel(config)
|
|
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
|
|
|
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.model.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.model.embed_tokens = value
|
|
|
|
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
transformer_outputs = self.model(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
hidden_states = transformer_outputs[0]
|
|
logits = self.score(hidden_states)
|
|
|
|
if input_ids is not None:
|
|
batch_size = input_ids.shape[0]
|
|
else:
|
|
batch_size = inputs_embeds.shape[0]
|
|
|
|
if self.config.pad_token_id is None and batch_size != 1:
|
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
|
if self.config.pad_token_id is None:
|
|
sequence_lengths = -1
|
|
else:
|
|
if input_ids is not None:
|
|
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
|
|
else:
|
|
sequence_lengths = -1
|
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
|
|
|
loss = None
|
|
|
|
if labels is not None:
|
|
|
|
shift_logits = logits[..., :-1, :].contiguous()
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
|
|
if self.training:
|
|
loss_fct = CrossEntropyLoss()
|
|
else:
|
|
loss_fct = CrossEntropyLoss(reduction="none")
|
|
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
shift_labels = shift_labels.view(-1)
|
|
|
|
shift_labels = shift_labels.to(shift_logits.device)
|
|
loss = loss_fct(shift_logits, shift_labels)
|
|
if not self.training:
|
|
loss_reshaped = loss.view(labels.size(0), -1)
|
|
logits = loss_reshaped.mean(dim=-1)
|
|
loss = loss.mean()
|
|
return CausalLMOutputWithPast(
|
|
loss=loss,
|
|
logits=logits,
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not return_dict:
|
|
output = (pooled_logits,) + transformer_outputs[1:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return SequenceClassifierOutputWithPast(
|
|
loss=loss,
|
|
logits=pooled_logits,
|
|
past_key_values=transformer_outputs.past_key_values,
|
|
hidden_states=transformer_outputs.hidden_states,
|
|
attentions=transformer_outputs.attentions,
|
|
) |