--- license: mit datasets: - virattt/financial-qa-10K language: - en metrics: - accuracy base_model: - EleutherAI/pythia-410m pipeline_tag: text-generation tags: - finance --- --- -- ## Model Details ### Model Descriptio - **Developed by:** [Haq Nawaz Malik] - **Model type:** [Lora_adapter] - **Language(s) (NLP):** [Text_gen_for_financial_purposes] - **Finetuned from model :** [EleutherAI/pythia-410m] ] ### Direct Use ``` from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel import torch # Load tokenizer tokenizer = AutoTokenizer.from_pretrained("EleutherAI/pythia-410m") tokenizer.pad_token = tokenizer.eos_token # Load base model base_model = AutoModelForCausalLM.from_pretrained("EleutherAI/pythia-410m").eval().to("cuda" if torch.cuda.is_available() else "cpu") # Load LoRA fine-tuned adapter from Hugging Face Hub lora_model = PeftModel.from_pretrained( base_model, "Omarrran/pythia-financial-lora" ).eval().to(base_model.device) # Define prompt prompt = "### Instruction:\n What are Tesla's main risk factors?\n\n### Response:\n" inputs = tokenizer(prompt, return_tensors="pt").to(base_model.device) # Generate from base model with torch.no_grad(): base_output = base_model.generate( **inputs, max_new_tokens=1000, do_sample=True, temperature=0.7, top_p=0.95, repetition_penalty=1.1, eos_token_id=tokenizer.eos_token_id ) # Generate from fine-tuned model with torch.no_grad(): lora_output = lora_model.generate( **inputs, max_new_tokens=1000, do_sample=True, temperature=0.7, top_p=0.95, repetition_penalty=1.1, eos_token_id=tokenizer.eos_token_id ) # Decode responses base_text = tokenizer.decode(base_output[0], skip_special_tokens=True) lora_text = tokenizer.decode(lora_output[0], skip_special_tokens=True) # Clean output (remove prompt part) base_response = base_text.split("### Response:")[-1].strip() lora_response = lora_text.split("### Response:")[-1].strip() # Display both outputs print("\n" + "="*80) print("📉 BEFORE Fine-Tuning (Base Pythia Model)") print("="*80) print(format_response(base_response)) print("\n" + "="*80) print("📈 AFTER Fine-Tuning (LoRA Adapter from Hugging Face)") print("="*1180) print(format_response(lora_response)) ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66afb3f1eaf3e876595627bf/ycJ7DA63bJ5ToML5R2xFz.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66afb3f1eaf3e876595627bf/IUAwy27LUTSpoJttocgrM.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66afb3f1eaf3e876595627bf/-ze2ngOcoggtTrsMtu_md.png)