|
from transformers import AutoProcessor, LlavaForConditionalGeneration |
|
|
|
from llmcompressor.modifiers.quantization import QuantizationModifier |
|
from llmcompressor.transformers import oneshot |
|
|
|
MODEL_ID = "llama-joycaption-beta-one-hf-llava" |
|
|
|
|
|
model_class = LlavaForConditionalGeneration |
|
model = model_class.from_pretrained(MODEL_ID, device_map="auto", torch_dtype="auto") |
|
processor = AutoProcessor.from_pretrained(MODEL_ID) |
|
|
|
|
|
|
|
|
|
|
|
recipe = QuantizationModifier( |
|
targets="Linear", |
|
scheme="FP8_DYNAMIC", |
|
ignore=["re:.*lm_head", "re:multi_modal_projector.*", "re:vision_tower.*"], |
|
) |
|
|
|
|
|
SAVE_DIR = MODEL_ID + "-FP8-Dynamic" |
|
oneshot(model=model, recipe=recipe, output_dir=SAVE_DIR) |
|
processor.save_pretrained(SAVE_DIR) |
|
|
|
|
|
print("========== SAMPLE GENERATION ==============") |
|
input_ids = processor(text="Hello my name is", return_tensors="pt").input_ids.to("cuda") |
|
output = model.generate(input_ids, max_new_tokens=20) |
|
print(processor.decode(output[0])) |
|
print("==========================================") |
|
|