--- language: en license: apache-2.0 tags: - fashion - ecommerce - product-description - roman-urdu - watches - opalhours datasets: - nvidia/Llama-Nemotron-Post-Training-Dataset metrics: - accuracy base_model: - MuzammilKhosa/opalhours-ai new_version: deepseek-ai/DeepSeek-R1 pipeline_tag: text-classification library_name: adapter-transformers --- # OpalHours AI **OpalHours AI** is a lightweight language model designed to assist with watch-related e-commerce content. It helps generate product descriptions, respond to customer queries, and maintain a consistent brand tone—especially for businesses communicating in both English and Roman Urdu. ## Model Capabilities - Create elegant product descriptions for wristwatches - Generate quick replies for customer messages (WhatsApp-style) - Suggest taglines, captions, and headlines - Supports basic Roman Urdu generation (e.g., "yeh watch classy aur modern lagti hai") ## Example Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("opalhours/opalhours-ai") model = AutoModelForCausalLM.from_pretrained("opalhours/opalhours-ai") prompt = "Describe a minimal silver dial men's watch with a black leather strap." inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True))