ta4tsering commited on
Commit
79f8132
·
verified ·
1 Parent(s): 09c344e

model repo created

Browse files
Files changed (48) hide show
  1. README.md +247 -0
  2. added_tokens.json +4 -0
  3. config.json +91 -0
  4. female_2.npy +3 -0
  5. generation_config.json +9 -0
  6. handler.py +111 -0
  7. model.safetensors +3 -0
  8. onnx/decoder_model.onnx +3 -0
  9. onnx/decoder_model_bnb4.onnx +3 -0
  10. onnx/decoder_model_fp16.onnx +3 -0
  11. onnx/decoder_model_int8.onnx +3 -0
  12. onnx/decoder_model_merged.onnx +3 -0
  13. onnx/decoder_model_q4.onnx +3 -0
  14. onnx/decoder_model_q4f16.onnx +3 -0
  15. onnx/decoder_model_quantized.onnx +3 -0
  16. onnx/decoder_model_uint8.onnx +3 -0
  17. onnx/decoder_postnet_and_vocoder.onnx +3 -0
  18. onnx/decoder_postnet_and_vocoder_bnb4.onnx +3 -0
  19. onnx/decoder_postnet_and_vocoder_fp16.onnx +3 -0
  20. onnx/decoder_postnet_and_vocoder_int8.onnx +3 -0
  21. onnx/decoder_postnet_and_vocoder_q4.onnx +3 -0
  22. onnx/decoder_postnet_and_vocoder_q4f16.onnx +3 -0
  23. onnx/decoder_postnet_and_vocoder_quantized.onnx +3 -0
  24. onnx/decoder_postnet_and_vocoder_uint8.onnx +3 -0
  25. onnx/decoder_with_past_model.onnx +3 -0
  26. onnx/decoder_with_past_model_bnb4.onnx +3 -0
  27. onnx/decoder_with_past_model_fp16.onnx +3 -0
  28. onnx/decoder_with_past_model_int8.onnx +3 -0
  29. onnx/decoder_with_past_model_q4.onnx +3 -0
  30. onnx/decoder_with_past_model_q4f16.onnx +3 -0
  31. onnx/decoder_with_past_model_quantized.onnx +3 -0
  32. onnx/decoder_with_past_model_uint8.onnx +3 -0
  33. onnx/encoder_model.onnx +3 -0
  34. onnx/encoder_model_bnb4.onnx +3 -0
  35. onnx/encoder_model_fp16.onnx +3 -0
  36. onnx/encoder_model_int8.onnx +3 -0
  37. onnx/encoder_model_q4.onnx +3 -0
  38. onnx/encoder_model_q4f16.onnx +3 -0
  39. onnx/encoder_model_quantized.onnx +3 -0
  40. onnx/encoder_model_uint8.onnx +3 -0
  41. preprocessor_config.json +19 -0
  42. pytorch_model.bin +3 -0
  43. quantize_config.json +17 -0
  44. requirements.txt +10 -0
  45. special_tokens_map.json +13 -0
  46. spm_char.model +3 -0
  47. tokenizer.json +231 -0
  48. tokenizer_config.json +63 -0
README.md ADDED
@@ -0,0 +1,247 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - audio
5
+ - text-to-speech
6
+ datasets:
7
+ - libritts
8
+ ---
9
+
10
+ # SpeechT5 (TTS task)
11
+
12
+ SpeechT5 model fine-tuned for speech synthesis (text-to-speech) on LibriTTS.
13
+
14
+ This model was introduced in [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
15
+
16
+ SpeechT5 was first released in [this repository](https://github.com/microsoft/SpeechT5/), [original weights](https://huggingface.co/mechanicalsea/speecht5-tts). The license used is [MIT](https://github.com/microsoft/SpeechT5/blob/main/LICENSE).
17
+
18
+
19
+
20
+ ## Model Description
21
+
22
+ Motivated by the success of T5 (Text-To-Text Transfer Transformer) in pre-trained natural language processing models, we propose a unified-modal SpeechT5 framework that explores the encoder-decoder pre-training for self-supervised speech/text representation learning. The SpeechT5 framework consists of a shared encoder-decoder network and six modal-specific (speech/text) pre/post-nets. After preprocessing the input speech/text through the pre-nets, the shared encoder-decoder network models the sequence-to-sequence transformation, and then the post-nets generate the output in the speech/text modality based on the output of the decoder.
23
+
24
+ Leveraging large-scale unlabeled speech and text data, we pre-train SpeechT5 to learn a unified-modal representation, hoping to improve the modeling capability for both speech and text. To align the textual and speech information into this unified semantic space, we propose a cross-modal vector quantization approach that randomly mixes up speech/text states with latent units as the interface between encoder and decoder.
25
+
26
+ Extensive evaluations show the superiority of the proposed SpeechT5 framework on a wide variety of spoken language processing tasks, including automatic speech recognition, speech synthesis, speech translation, voice conversion, speech enhancement, and speaker identification.
27
+
28
+ - **Developed by:** Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
29
+ - **Shared by [optional]:** [Matthijs Hollemans](https://huggingface.co/Matthijs)
30
+ - **Model type:** text-to-speech
31
+ - **Language(s) (NLP):** [More Information Needed]
32
+ - **License:** [MIT](https://github.com/microsoft/SpeechT5/blob/main/LICENSE)
33
+ - **Finetuned from model [optional]:** [More Information Needed]
34
+
35
+
36
+ ## Model Sources [optional]
37
+
38
+ <!-- Provide the basic links for the model. -->
39
+
40
+ - **Repository:** [https://github.com/microsoft/SpeechT5/]
41
+ - **Paper:** [https://arxiv.org/pdf/2110.07205.pdf]
42
+ - **Blog Post:** [https://huggingface.co/blog/speecht5]
43
+ - **Demo:** [https://huggingface.co/spaces/Matthijs/speecht5-tts-demo]
44
+
45
+
46
+ # Uses
47
+
48
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
49
+
50
+ ## Direct Use
51
+
52
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
53
+
54
+ You can use this model for speech synthesis. See the [model hub](https://huggingface.co/models?search=speecht5) to look for fine-tuned versions on a task that interests you.
55
+
56
+ ## Downstream Use [optional]
57
+
58
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
59
+
60
+ [More Information Needed]
61
+
62
+ ## Out-of-Scope Use
63
+
64
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
65
+
66
+ [More Information Needed]
67
+
68
+ # Bias, Risks, and Limitations
69
+
70
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
71
+
72
+ [More Information Needed]
73
+
74
+ ## Recommendations
75
+
76
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
77
+
78
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
79
+
80
+
81
+ ## How to Get Started With the Model
82
+
83
+ Use the code below to convert text into a mono 16 kHz speech waveform.
84
+
85
+ ```python
86
+ # Following pip packages need to be installed:
87
+ # !pip install git+https://github.com/huggingface/transformers sentencepiece datasets
88
+
89
+ from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
90
+ from datasets import load_dataset
91
+ import torch
92
+ import soundfile as sf
93
+ from datasets import load_dataset
94
+
95
+ processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
96
+ model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
97
+ vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
98
+
99
+ inputs = processor(text="Hello, my dog is cute", return_tensors="pt")
100
+
101
+ # load xvector containing speaker's voice characteristics from a dataset
102
+ embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
103
+ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
104
+
105
+ speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
106
+
107
+ sf.write("speech.wav", speech.numpy(), samplerate=16000)
108
+ ```
109
+
110
+ ### Fine-tuning the Model
111
+
112
+ Refer to [this Colab notebook](https://colab.research.google.com/drive/1i7I5pzBcU3WDFarDnzweIj4-sVVoIUFJ) for an example of how to fine-tune SpeechT5 for TTS on a different dataset or a new language.
113
+
114
+ # Training Details
115
+
116
+ ## Training Data
117
+
118
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
119
+
120
+ LibriTTS
121
+
122
+ ## Training Procedure
123
+
124
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
125
+
126
+ ### Preprocessing [optional]
127
+
128
+ Leveraging large-scale unlabeled speech and text data, we pre-train SpeechT5 to learn a unified-modal representation, hoping to improve the modeling capability for both speech and text.
129
+
130
+
131
+ ### Training hyperparameters
132
+ - **Precision:** [More Information Needed] <!--fp16, bf16, fp8, fp32 -->
133
+ - **Regime:** [More Information Needed] <!--mixed precision or not -->
134
+
135
+ ### Speeds, Sizes, Times [optional]
136
+
137
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
138
+
139
+ [More Information Needed]
140
+
141
+ # Evaluation
142
+
143
+ <!-- This section describes the evaluation protocols and provides the results. -->
144
+
145
+ ## Testing Data, Factors & Metrics
146
+
147
+ ### Testing Data
148
+
149
+ <!-- This should link to a Data Card if possible. -->
150
+
151
+ [More Information Needed]
152
+
153
+ ### Factors
154
+
155
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
156
+
157
+ [More Information Needed]
158
+
159
+ ### Metrics
160
+
161
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
162
+
163
+ [More Information Needed]
164
+
165
+ ## Results
166
+
167
+ [More Information Needed]
168
+
169
+ ### Summary
170
+
171
+
172
+
173
+ # Model Examination [optional]
174
+
175
+ <!-- Relevant interpretability work for the model goes here -->
176
+
177
+ Extensive evaluations show the superiority of the proposed SpeechT5 framework on a wide variety of spoken language processing tasks, including automatic speech recognition, speech synthesis, speech translation, voice conversion, speech enhancement, and speaker identification.
178
+
179
+ # Environmental Impact
180
+
181
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
182
+
183
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
184
+
185
+ - **Hardware Type:** [More Information Needed]
186
+ - **Hours used:** [More Information Needed]
187
+ - **Cloud Provider:** [More Information Needed]
188
+ - **Compute Region:** [More Information Needed]
189
+ - **Carbon Emitted:** [More Information Needed]
190
+
191
+ # Technical Specifications [optional]
192
+
193
+ ## Model Architecture and Objective
194
+
195
+ The SpeechT5 framework consists of a shared encoder-decoder network and six modal-specific (speech/text) pre/post-nets.
196
+
197
+ After preprocessing the input speech/text through the pre-nets, the shared encoder-decoder network models the sequence-to-sequence transformation, and then the post-nets generate the output in the speech/text modality based on the output of the decoder.
198
+
199
+ ## Compute Infrastructure
200
+
201
+ [More Information Needed]
202
+
203
+ ### Hardware
204
+
205
+ [More Information Needed]
206
+
207
+ ### Software
208
+
209
+ [More Information Needed]
210
+
211
+ # Citation [optional]
212
+
213
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
214
+
215
+ **BibTeX:**
216
+
217
+ ```bibtex
218
+ @inproceedings{ao-etal-2022-speecht5,
219
+ title = {{S}peech{T}5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing},
220
+ author = {Ao, Junyi and Wang, Rui and Zhou, Long and Wang, Chengyi and Ren, Shuo and Wu, Yu and Liu, Shujie and Ko, Tom and Li, Qing and Zhang, Yu and Wei, Zhihua and Qian, Yao and Li, Jinyu and Wei, Furu},
221
+ booktitle = {Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
222
+ month = {May},
223
+ year = {2022},
224
+ pages={5723--5738},
225
+ }
226
+ ```
227
+
228
+ # Glossary [optional]
229
+
230
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
231
+
232
+ - **text-to-speech** to synthesize audio
233
+
234
+ # More Information [optional]
235
+
236
+ [More Information Needed]
237
+
238
+ # Model Card Authors [optional]
239
+
240
+ Disclaimer: The team releasing SpeechT5 did not write a model card for this model so this model card has been written by the Hugging Face team.
241
+
242
+ # Model Card Contact
243
+
244
+ [More Information Needed]
245
+
246
+
247
+
added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "<ctc_blank>": 80,
3
+ "<mask>": 79
4
+ }
config.json ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "openpecha/speecht5-tts-01",
3
+ "activation_dropout": 0.1,
4
+ "apply_spec_augment": true,
5
+ "architectures": [
6
+ "SpeechT5ForTextToSpeech"
7
+ ],
8
+ "attention_dropout": 0.1,
9
+ "bos_token_id": 0,
10
+ "conv_bias": false,
11
+ "conv_dim": [
12
+ 512,
13
+ 512,
14
+ 512,
15
+ 512,
16
+ 512,
17
+ 512,
18
+ 512
19
+ ],
20
+ "conv_kernel": [
21
+ 10,
22
+ 3,
23
+ 3,
24
+ 3,
25
+ 3,
26
+ 2,
27
+ 2
28
+ ],
29
+ "conv_stride": [
30
+ 5,
31
+ 2,
32
+ 2,
33
+ 2,
34
+ 2,
35
+ 2,
36
+ 2
37
+ ],
38
+ "decoder_attention_heads": 12,
39
+ "decoder_ffn_dim": 3072,
40
+ "decoder_layerdrop": 0.1,
41
+ "decoder_layers": 6,
42
+ "decoder_start_token_id": 2,
43
+ "encoder_attention_heads": 12,
44
+ "encoder_ffn_dim": 3072,
45
+ "encoder_layerdrop": 0.1,
46
+ "encoder_layers": 12,
47
+ "encoder_max_relative_position": 160,
48
+ "eos_token_id": 2,
49
+ "feat_extract_activation": "gelu",
50
+ "feat_extract_norm": "group",
51
+ "feat_proj_dropout": 0.0,
52
+ "guided_attention_loss_num_heads": 2,
53
+ "guided_attention_loss_scale": 10.0,
54
+ "guided_attention_loss_sigma": 0.4,
55
+ "hidden_act": "gelu",
56
+ "hidden_dropout": 0.1,
57
+ "hidden_size": 768,
58
+ "initializer_range": 0.02,
59
+ "is_encoder_decoder": true,
60
+ "layer_norm_eps": 1e-05,
61
+ "mask_feature_length": 10,
62
+ "mask_feature_min_masks": 0,
63
+ "mask_feature_prob": 0.0,
64
+ "mask_time_length": 10,
65
+ "mask_time_min_masks": 2,
66
+ "mask_time_prob": 0.05,
67
+ "max_length": 1876,
68
+ "max_speech_positions": 1876,
69
+ "max_text_positions": 600,
70
+ "model_type": "speecht5",
71
+ "num_conv_pos_embedding_groups": 16,
72
+ "num_conv_pos_embeddings": 128,
73
+ "num_feat_extract_layers": 7,
74
+ "num_mel_bins": 80,
75
+ "pad_token_id": 1,
76
+ "positional_dropout": 0.1,
77
+ "reduction_factor": 2,
78
+ "scale_embedding": false,
79
+ "speaker_embedding_dim": 512,
80
+ "speech_decoder_postnet_dropout": 0.5,
81
+ "speech_decoder_postnet_kernel": 5,
82
+ "speech_decoder_postnet_layers": 5,
83
+ "speech_decoder_postnet_units": 256,
84
+ "speech_decoder_prenet_dropout": 0.5,
85
+ "speech_decoder_prenet_layers": 2,
86
+ "speech_decoder_prenet_units": 256,
87
+ "transformers_version": "4.43.4",
88
+ "use_cache": false,
89
+ "use_guided_attention_loss": true,
90
+ "vocab_size": 81
91
+ }
female_2.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f46af6a5a6cc28b286a793c675203a3ba922648a7c3df25307d1ecfc86870e6
3
+ size 2176
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "decoder_start_token_id": 2,
5
+ "eos_token_id": 2,
6
+ "max_length": 1876,
7
+ "pad_token_id": 1,
8
+ "transformers_version": "4.43.4"
9
+ }
handler.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, Any,Union
2
+ import tempfile
3
+ import numpy as np
4
+ import torch
5
+ import pyewts
6
+ import noisereduce as nr
7
+ from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
8
+ from num2tib.core import convert
9
+ from num2tib.core import convert2text
10
+ import soundfile as sf
11
+ import base64
12
+ import re
13
+ import requests
14
+ import os
15
+ from pydub import AudioSegment
16
+
17
+ converter = pyewts.pyewts()
18
+ def download_file(url, destination):
19
+ response = requests.get(url)
20
+ with open(destination, 'wb') as file:
21
+ file.write(response.content)
22
+
23
+ # Example usage:
24
+ download_file('https://huggingface.co/openpecha/speecht5-tts-01/resolve/main/female_2.npy', 'female_2.npy')
25
+ def replace_numbers_with_convert(sentence, wylie=True):
26
+ pattern = r'\d+(\.\d+)?'
27
+ def replace(match):
28
+ return convert(match.group(), wylie)
29
+ result = re.sub(pattern, replace, sentence)
30
+
31
+ return result
32
+
33
+ def cleanup_text(inputs):
34
+ for src, dst in replacements:
35
+ inputs = inputs.replace(src, dst)
36
+ return inputs
37
+
38
+ speaker_embeddings = {
39
+ "Lhasa(female)": "female_2.npy",
40
+
41
+ }
42
+
43
+ replacements = [
44
+ ('_', '_'),
45
+ ('*', 'v'),
46
+ ('`', ';'),
47
+ ('~', ','),
48
+ ('+', ','),
49
+ ('\\', ';'),
50
+ ('|', ';'),
51
+ ('╚',''),
52
+ ('╗','')
53
+ ]
54
+
55
+ class EndpointHandler():
56
+ def __init__(self, path=""):
57
+ # load the model
58
+ self.processor = SpeechT5Processor.from_pretrained("TenzinGayche/TTS_run3_ep20_174k_b")
59
+ self.model = SpeechT5ForTextToSpeech.from_pretrained("TenzinGayche/TTS_run3_ep20_174k_b")
60
+ self.model.to('cuda')
61
+ self.vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
62
+
63
+
64
+ def __call__(self, data: Dict[str, Any]) -> Dict[str, Union[int, str]]:
65
+ """_summary_
66
+
67
+ Args:
68
+ data (Dict[str, Any]): _description_
69
+
70
+ Returns:
71
+ bytes: _description_
72
+ """
73
+ text = data.pop("inputs",data)
74
+
75
+ # process input
76
+
77
+ if len(text.strip()) == 0:
78
+ return (16000, np.zeros(0).astype(np.int16))
79
+ text = converter.toWylie(text)
80
+ text=cleanup_text(text)
81
+ text=replace_numbers_with_convert(text)
82
+ inputs = self.processor(text=text, return_tensors="pt")
83
+ input_ids = inputs["input_ids"]
84
+ input_ids = input_ids[..., :self.model.config.max_text_positions]
85
+ speaker_embedding = np.load(speaker_embeddings['Lhasa(female)'])
86
+ speaker_embedding = torch.tensor(speaker_embedding)
87
+ speech = self.model.generate_speech(input_ids.to('cuda'), speaker_embedding.to('cuda'), vocoder=self.vocoder.to('cuda'))
88
+ speech = nr.reduce_noise(y=speech.to('cpu'), sr=16000)
89
+ # Create a unique temporary WAV file
90
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_wav_file:
91
+ temp_wav_path = temp_wav_file.name
92
+ sf.write(temp_wav_path, speech, 16000, 'PCM_24') # Use sf.write to write the WAV file
93
+
94
+ # Read the WAV file and encode it as base64
95
+ with open(temp_wav_path, "rb") as wav_file:
96
+ audio_base64 = base64.b64encode(wav_file.read()).decode("utf-8")
97
+
98
+ # Clean up the temporary WAV file
99
+ os.remove(temp_wav_path)
100
+
101
+ return {
102
+ "sample_rate": 16000,
103
+ "audio_base64": audio_base64, # Base64-encoded audio data
104
+ "model": "openpecha/speecht5-tts-01",
105
+ "model_version": "1"
106
+ }
107
+
108
+
109
+
110
+
111
+
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a18d13c81eadc1f1ad894772903c6cfde410567590110c7340fa37ed8e4d9f19
3
+ size 577789320
onnx/decoder_model.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5861f41a72751e029b6393b15211f08e93396f3b71fa77932cd8c688c07c669
3
+ size 238389463
onnx/decoder_model_bnb4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75965505976673c4e0f78e920078b7ae862e6e6c61eaf27640f99d5bfe4dd4ce
3
+ size 38979403
onnx/decoder_model_fp16.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e76cc47e78a7861a1746e1002969fa58bd5b1c79ff40709d79e4106b4ff38533
3
+ size 119305248
onnx/decoder_model_int8.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:823e31c2b3966968d28492b05788a00f5d4f53ea4e7ef1d8b8086cc0583a4855
3
+ size 64743535
onnx/decoder_model_merged.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d82ffd7cf107ea32d36f44992a3b25c39f3bc23899fec620395834dcee5296b
3
+ size 244349167
onnx/decoder_model_q4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e3353cacdf5535b891faf6fa779ac72b9a5d9709c204e05ec618477c142e09d
3
+ size 42607312
onnx/decoder_model_q4f16.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89e2155435bc07c1683b38a459886ac9badacbc4d89873829285c205e403c460
3
+ size 35923480
onnx/decoder_model_quantized.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:823e31c2b3966968d28492b05788a00f5d4f53ea4e7ef1d8b8086cc0583a4855
3
+ size 64743535
onnx/decoder_model_uint8.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e87f23d34ae2bfecb3301537613767cfa41c0281017b1eeb3433417fbadd8b2e
3
+ size 64743535
onnx/decoder_postnet_and_vocoder.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbd965cb53a619b9820021710da77705bc5e08a264c1ced65d9f593678d7f13f
3
+ size 55455058
onnx/decoder_postnet_and_vocoder_bnb4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:509fb2a028bed47ab8afa21c70244d5ff1616348ea314d2e16a2da213c4f09ac
3
+ size 55455077
onnx/decoder_postnet_and_vocoder_fp16.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f23dac8d29895f90ec03b7b03faa60f54f31d4ec405220e479736faaf16b0829
3
+ size 27759944
onnx/decoder_postnet_and_vocoder_int8.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c97a30c295be29e1e06faef052be223ebbbcf163d20caa2f990aba929fcb2543
3
+ size 18254997
onnx/decoder_postnet_and_vocoder_q4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:509fb2a028bed47ab8afa21c70244d5ff1616348ea314d2e16a2da213c4f09ac
3
+ size 55455077
onnx/decoder_postnet_and_vocoder_q4f16.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0db130e43cf870bede3f3cec1d064164c9abdbdf0978896daf47e6c43da4b089
3
+ size 27759963
onnx/decoder_postnet_and_vocoder_quantized.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:517a7a241890dbb33388cc9f09907771ac0411882d7c209e1c999246eda60ead
3
+ size 18254997
onnx/decoder_postnet_and_vocoder_uint8.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:517a7a241890dbb33388cc9f09907771ac0411882d7c209e1c999246eda60ead
3
+ size 18254997
onnx/decoder_with_past_model.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:314c8c93212125832988780bd65b2fbf7b244dd8197aac5069c96c3c79a3c9da
3
+ size 210030510
onnx/decoder_with_past_model_bnb4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:397236d5cb7432415ee0fe93376e0e3c9de1e75ce96f6481d2300ed052c3697c
3
+ size 34948830
onnx/decoder_with_past_model_fp16.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4bcaad87f2b1aba003f93dc2ec867e7256938a4d0a7758169fba04e9e34ef919
3
+ size 105123157
onnx/decoder_with_past_model_int8.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:405ea15db995fe2bf5122c98cf6c117fdd75c0e5ebbd892fd52809a94d76e744
3
+ size 57560019
onnx/decoder_with_past_model_q4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5961f1cb633809a1b0965417e9dff848c9966aa8c785dc198196baaa0e6625be
3
+ size 38134455
onnx/decoder_with_past_model_q4f16.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0aff61cda451eb260e1a63b523bdd9cddf3c86254fe996d70a3eef1699bb269
3
+ size 31914053
onnx/decoder_with_past_model_quantized.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:405ea15db995fe2bf5122c98cf6c117fdd75c0e5ebbd892fd52809a94d76e744
3
+ size 57560019
onnx/decoder_with_past_model_uint8.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97537ef63ab98325eb11a5fed9964afbc9252b84b59bfc9344d485b11ef156be
3
+ size 57560019
onnx/encoder_model.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a68bf8abf2b005b31d32a829efac70bda5357536e0045c5da62b1faf82d0bf0d
3
+ size 342759185
onnx/encoder_model_bnb4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca032a5b440875d2b3222a5f26ab10458aac6f68b7fe0e1419c7dcb93bb9ac33
3
+ size 50807507
onnx/encoder_model_fp16.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10215f235aac5572d07086e1eb421d0263111763af1909b1885024f26950234b
3
+ size 171559930
onnx/encoder_model_int8.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e3bef7d3297b1da9cdf809f7beee23c6ff6a1ac47389f2f425f77ee315eeb3d
3
+ size 88227663
onnx/encoder_model_q4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:943f37c68b24359c89e7f09a1c29e62c5a00f5025dabf706f24ebc6437b61aa5
3
+ size 56115395
onnx/encoder_model_q4f16.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b8c93002dd58c0ff7fe5cbcc3344138bb139baeee4df3f57d09554c850abd63
3
+ size 49477133
onnx/encoder_model_quantized.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e3bef7d3297b1da9cdf809f7beee23c6ff6a1ac47389f2f425f77ee315eeb3d
3
+ size 88227663
onnx/encoder_model_uint8.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a34759f65d5d7ba531cea2642b2be005a26dffc8dd9767f00f3abde6953c0c7d
3
+ size 88227663
preprocessor_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": false,
3
+ "feature_extractor_type": "SpeechT5FeatureExtractor",
4
+ "feature_size": 1,
5
+ "fmax": 7600,
6
+ "fmin": 80,
7
+ "frame_signal_scale": 1.0,
8
+ "hop_length": 16,
9
+ "mel_floor": 1e-10,
10
+ "num_mel_bins": 80,
11
+ "padding_side": "right",
12
+ "padding_value": 0.0,
13
+ "processor_class": "SpeechT5Processor",
14
+ "reduction_factor": 2,
15
+ "return_attention_mask": true,
16
+ "sampling_rate": 16000,
17
+ "win_function": "hann_window",
18
+ "win_length": 64
19
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0286da88000d1b9cbf4e402accd2556bd298c3124e1b873f6957ee82419b289e
3
+ size 577872765
quantize_config.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "modes": [
3
+ "fp16",
4
+ "q8",
5
+ "int8",
6
+ "uint8",
7
+ "q4",
8
+ "q4f16",
9
+ "bnb4"
10
+ ],
11
+ "per_channel": true,
12
+ "reduce_range": true,
13
+ "block_size": null,
14
+ "is_symmetric": true,
15
+ "accuracy_level": null,
16
+ "quant_type": 1
17
+ }
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ git+https://github.com/TenzinGayche/num2tib.git
2
+ numpy
3
+ pyewts
4
+ noisereduce
5
+ transformers
6
+ SentencePiece
7
+ torch
8
+ requests
9
+ soundfile
10
+ pydub
special_tokens_map.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "eos_token": "</s>",
4
+ "mask_token": {
5
+ "content": "<mask>",
6
+ "lstrip": true,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false
10
+ },
11
+ "pad_token": "<pad>",
12
+ "unk_token": "<unk>"
13
+ }
spm_char.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fcc48f3e225f627b1641db410ceb0c8649bd2b0c982e150b03f8be3728ab560
3
+ size 238473
tokenizer.json ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "version": "1.0",
3
+ "truncation": null,
4
+ "padding": null,
5
+ "added_tokens": [
6
+ {
7
+ "id": 0,
8
+ "content": "<s>",
9
+ "single_word": false,
10
+ "lstrip": false,
11
+ "rstrip": false,
12
+ "normalized": false,
13
+ "special": true
14
+ },
15
+ {
16
+ "id": 1,
17
+ "content": "<pad>",
18
+ "single_word": false,
19
+ "lstrip": false,
20
+ "rstrip": false,
21
+ "normalized": false,
22
+ "special": true
23
+ },
24
+ {
25
+ "id": 2,
26
+ "content": "</s>",
27
+ "single_word": false,
28
+ "lstrip": false,
29
+ "rstrip": false,
30
+ "normalized": false,
31
+ "special": true
32
+ },
33
+ {
34
+ "id": 3,
35
+ "content": "<unk>",
36
+ "single_word": false,
37
+ "lstrip": false,
38
+ "rstrip": false,
39
+ "normalized": false,
40
+ "special": true
41
+ },
42
+ {
43
+ "id": 79,
44
+ "content": "<mask>",
45
+ "single_word": false,
46
+ "lstrip": false,
47
+ "rstrip": false,
48
+ "normalized": false,
49
+ "special": true
50
+ },
51
+ {
52
+ "id": 80,
53
+ "content": "<ctc_blank>",
54
+ "single_word": false,
55
+ "lstrip": false,
56
+ "rstrip": false,
57
+ "normalized": false,
58
+ "special": true
59
+ }
60
+ ],
61
+ "normalizer": {
62
+ "type": "Precompiled",
63
+ "precompiled_charsmap": null
64
+ },
65
+ "pre_tokenizer": {
66
+ "type": "Sequence",
67
+ "pretokenizers": [
68
+ {
69
+ "type": "WhitespaceSplit"
70
+ },
71
+ {
72
+ "type": "Metaspace",
73
+ "replacement": "\u2581",
74
+ "add_prefix_space": true
75
+ },
76
+ {
77
+ "type": "Split",
78
+ "pattern": {
79
+ "Regex": ""
80
+ },
81
+ "behavior": "Isolated",
82
+ "invert": false
83
+ }
84
+ ]
85
+ },
86
+ "post_processor": {
87
+ "type": "TemplateProcessing",
88
+ "single": [
89
+ {
90
+ "Sequence": {
91
+ "id": "A",
92
+ "type_id": 0
93
+ }
94
+ },
95
+ {
96
+ "SpecialToken": {
97
+ "id": "</s>",
98
+ "type_id": 0
99
+ }
100
+ }
101
+ ],
102
+ "pair": [
103
+ {
104
+ "Sequence": {
105
+ "id": "A",
106
+ "type_id": 0
107
+ }
108
+ },
109
+ {
110
+ "SpecialToken": {
111
+ "id": "</s>",
112
+ "type_id": 0
113
+ }
114
+ },
115
+ {
116
+ "Sequence": {
117
+ "id": "B",
118
+ "type_id": 0
119
+ }
120
+ },
121
+ {
122
+ "SpecialToken": {
123
+ "id": "</s>",
124
+ "type_id": 0
125
+ }
126
+ }
127
+ ],
128
+ "special_tokens": {
129
+ "</s>": {
130
+ "id": "</s>",
131
+ "ids": [
132
+ 2
133
+ ],
134
+ "tokens": [
135
+ "</s>"
136
+ ]
137
+ }
138
+ }
139
+ },
140
+ "decoder": {
141
+ "type": "Metaspace",
142
+ "replacement": "\u2581",
143
+ "add_prefix_space": true
144
+ },
145
+ "model": {
146
+ "unk_id": 2,
147
+ "vocab": {
148
+ "<s>": 0,
149
+ "<pad>": 1,
150
+ "</s>": 2,
151
+ "<unk>": 3,
152
+ "\u2581": 4,
153
+ "e": 5,
154
+ "t": 6,
155
+ "a": 7,
156
+ "o": 8,
157
+ "n": 9,
158
+ "i": 10,
159
+ "h": 11,
160
+ "s": 12,
161
+ "r": 13,
162
+ "d": 14,
163
+ "l": 15,
164
+ "u": 16,
165
+ "c": 17,
166
+ "m": 18,
167
+ "f": 19,
168
+ "w": 20,
169
+ "g": 21,
170
+ "y": 22,
171
+ ",": 23,
172
+ "p": 24,
173
+ "b": 25,
174
+ ".": 26,
175
+ "v": 27,
176
+ "k": 28,
177
+ "\"": 29,
178
+ "I": 30,
179
+ "'": 31,
180
+ "T": 32,
181
+ "A": 33,
182
+ "S": 34,
183
+ "H": 35,
184
+ ";": 36,
185
+ "x": 37,
186
+ "W": 38,
187
+ "-": 39,
188
+ "B": 40,
189
+ "?": 41,
190
+ "C": 42,
191
+ "M": 43,
192
+ "!": 44,
193
+ "q": 45,
194
+ "j": 46,
195
+ "E": 47,
196
+ "N": 48,
197
+ "P": 49,
198
+ "O": 50,
199
+ "D": 51,
200
+ "L": 52,
201
+ "G": 53,
202
+ "R": 54,
203
+ "F": 55,
204
+ "Y": 56,
205
+ "z": 57,
206
+ "J": 58,
207
+ ":": 59,
208
+ "K": 60,
209
+ "U": 61,
210
+ "V": 62,
211
+ ")": 63,
212
+ "(": 64,
213
+ "Q": 65,
214
+ "Z": 66,
215
+ "]": 67,
216
+ "[": 68,
217
+ "X": 69,
218
+ "\u2014": 70,
219
+ "/": 71,
220
+ "\u00e6": 72,
221
+ "\u00e9": 73,
222
+ "{": 74,
223
+ "}": 75,
224
+ "\u00ea": 76,
225
+ "\u0153": 77,
226
+ "\u0304": 78,
227
+ "<mask>": 79,
228
+ "<ctc_blank>": 80
229
+ }
230
+ }
231
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "79": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": true,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "80": {
44
+ "content": "<ctc_blank>",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": false
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "eos_token": "</s>",
55
+ "mask_token": "<mask>",
56
+ "model_max_length": 600,
57
+ "normalize": false,
58
+ "pad_token": "<pad>",
59
+ "processor_class": "SpeechT5Processor",
60
+ "sp_model_kwargs": {},
61
+ "tokenizer_class": "SpeechT5Tokenizer",
62
+ "unk_token": "<unk>"
63
+ }