Update README.md
Browse files
README.md
CHANGED
@@ -33,67 +33,9 @@ pipeline_tag: sentence-similarity
|
|
33 |
---
|
34 |
|
35 |
|
36 |
-
#
|
37 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
38 |
|
39 |
-
## Usage (Sentence-Transformers)
|
40 |
-
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
41 |
-
|
42 |
-
```
|
43 |
-
pip install -U sentence-transformers
|
44 |
-
```
|
45 |
-
|
46 |
-
Then you can use the model like this:
|
47 |
-
```python
|
48 |
-
from sentence_transformers import SentenceTransformer
|
49 |
-
sentences = ["This is an example sentence", "Each sentence is converted"]
|
50 |
-
|
51 |
-
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
52 |
-
embeddings = model.encode(sentences)
|
53 |
-
print(embeddings)
|
54 |
-
```
|
55 |
-
|
56 |
-
## Usage (HuggingFace Transformers)
|
57 |
-
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
58 |
-
|
59 |
-
```python
|
60 |
-
from transformers import AutoTokenizer, AutoModel
|
61 |
-
import torch
|
62 |
-
import torch.nn.functional as F
|
63 |
-
|
64 |
-
#Mean Pooling - Take attention mask into account for correct averaging
|
65 |
-
def mean_pooling(model_output, attention_mask):
|
66 |
-
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
67 |
-
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
68 |
-
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
69 |
-
|
70 |
-
|
71 |
-
# Sentences we want sentence embeddings for
|
72 |
-
sentences = ['This is an example sentence', 'Each sentence is converted']
|
73 |
-
|
74 |
-
# Load model from HuggingFace Hub
|
75 |
-
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
76 |
-
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
77 |
-
|
78 |
-
# Tokenize sentences
|
79 |
-
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
80 |
-
|
81 |
-
# Compute token embeddings
|
82 |
-
with torch.no_grad():
|
83 |
-
model_output = model(**encoded_input)
|
84 |
-
|
85 |
-
# Perform pooling
|
86 |
-
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
87 |
-
|
88 |
-
# Normalize embeddings
|
89 |
-
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
|
90 |
-
|
91 |
-
print("Sentence embeddings:")
|
92 |
-
print(sentence_embeddings)
|
93 |
-
```
|
94 |
-
|
95 |
-
------
|
96 |
-
|
97 |
## Background
|
98 |
|
99 |
The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised
|
|
|
33 |
---
|
34 |
|
35 |
|
36 |
+
# Matisse6410/MNLP_M2_document_encoder
|
37 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
## Background
|
40 |
|
41 |
The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised
|