Matisse6410 commited on
Commit
b13a649
·
verified ·
1 Parent(s): 5752999

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -59
README.md CHANGED
@@ -33,67 +33,9 @@ pipeline_tag: sentence-similarity
33
  ---
34
 
35
 
36
- # all-MiniLM-L6-v2
37
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
38
 
39
- ## Usage (Sentence-Transformers)
40
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
41
-
42
- ```
43
- pip install -U sentence-transformers
44
- ```
45
-
46
- Then you can use the model like this:
47
- ```python
48
- from sentence_transformers import SentenceTransformer
49
- sentences = ["This is an example sentence", "Each sentence is converted"]
50
-
51
- model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
52
- embeddings = model.encode(sentences)
53
- print(embeddings)
54
- ```
55
-
56
- ## Usage (HuggingFace Transformers)
57
- Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
58
-
59
- ```python
60
- from transformers import AutoTokenizer, AutoModel
61
- import torch
62
- import torch.nn.functional as F
63
-
64
- #Mean Pooling - Take attention mask into account for correct averaging
65
- def mean_pooling(model_output, attention_mask):
66
- token_embeddings = model_output[0] #First element of model_output contains all token embeddings
67
- input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
68
- return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
69
-
70
-
71
- # Sentences we want sentence embeddings for
72
- sentences = ['This is an example sentence', 'Each sentence is converted']
73
-
74
- # Load model from HuggingFace Hub
75
- tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
76
- model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
77
-
78
- # Tokenize sentences
79
- encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
80
-
81
- # Compute token embeddings
82
- with torch.no_grad():
83
- model_output = model(**encoded_input)
84
-
85
- # Perform pooling
86
- sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
87
-
88
- # Normalize embeddings
89
- sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
90
-
91
- print("Sentence embeddings:")
92
- print(sentence_embeddings)
93
- ```
94
-
95
- ------
96
-
97
  ## Background
98
 
99
  The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised
 
33
  ---
34
 
35
 
36
+ # Matisse6410/MNLP_M2_document_encoder
37
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
  ## Background
40
 
41
  The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised