File size: 3,064 Bytes
1c9851f
 
 
9349223
1c9851f
 
 
 
5b64ec6
 
1c9851f
9349223
 
5b64ec6
1c9851f
 
e1e6744
1c9851f
 
 
 
 
 
 
 
 
 
946d02f
1c9851f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9349223
 
e5751ad
 
9349223
e5751ad
9349223
 
 
 
 
 
 
 
 
 
 
003b3fc
9349223
 
1c9851f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
base_model: Qwen/Qwen2.5-1.5B-Instruct
library_name: transformers
model_name: null
tags:
- generated_from_trainer
- trl
- grpo
- deepseek
- r1
licence: license
license: apache-2.0
datasets:
- bhaviktheslider/JSON-Unstructured-Structured
---

# Model Card for DeepSeek-R1-Strategy-Qwen-2.5-1.5b-Unstructured-To-Structured

This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).

## Quick start

```python
from transformers import pipeline

question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="MasterControlAIML/DeepSeek-R1-Strategy-Qwen-2.5-1.5b-Unstructured-To-Structured", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```

## Training procedure

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/bhavik18385-mastercontrol/grpo_training/runs/cnqeubat) 


This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).

### Framework versions

- TRL: 0.14.0
- Transformers: 4.48.1
- Pytorch: 2.5.1
- Datasets: 3.1.0
- Tokenizers: 0.21.0

---
license: apache-2.0

Datasets:
- MasterControlAIML/JSON-Unstructured-Structured
  
---
**DeepSeek R1 Strategy Replication on Qwen-2.5-1.5b on 8*H100 GPUS**

*Problem - Unstructured to Structured JSON Creation*

*Desired Input - Unstructured Text Paragraphs and Blank Schema Rules*

*Output - Filled Created JSON from Unstructured Text following Blank Schema Rules*

*Dataset Link to Understand More - https://huggingface.co/datasets/MasterControlAIML/JSON-Unstructured-Structured*

## Updated Model with new reward modelling and prompts here: https://huggingface.co/MasterControlAIML/DeepSeek-R1-Qwen-2.5-1.5b-Latest-Unstructured-To-Structured


## Citations

Cite GRPO as:

```bibtex
@article{zhihong2024deepseekmath,
    title        = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
    author       = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
    year         = 2024,
    eprint       = {arXiv:2402.03300},
}

```

Cite TRL as:
    
```bibtex
@misc{vonwerra2022trl,
	title        = {{TRL: Transformer Reinforcement Learning}},
	author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
	year         = 2020,
	journal      = {GitHub repository},
	publisher    = {GitHub},
	howpublished = {\url{https://github.com/huggingface/trl}}
}
```