|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import TYPE_CHECKING, Dict |
|
|
|
from transformers.trainer_utils import SchedulerType |
|
|
|
from ...extras.constants import TRAINING_STAGES |
|
from ...extras.misc import get_device_count |
|
from ...extras.packages import is_gradio_available |
|
from ..common import DEFAULT_DATA_DIR, list_checkpoints, list_datasets |
|
from ..utils import change_stage, list_config_paths, list_output_dirs |
|
from .data import create_preview_box |
|
|
|
|
|
if is_gradio_available(): |
|
import gradio as gr |
|
|
|
|
|
if TYPE_CHECKING: |
|
from gradio.components import Component |
|
|
|
from ..engine import Engine |
|
|
|
|
|
def create_train_tab(engine: "Engine") -> Dict[str, "Component"]: |
|
input_elems = engine.manager.get_base_elems() |
|
elem_dict = dict() |
|
|
|
with gr.Row(): |
|
training_stage = gr.Dropdown( |
|
choices=list(TRAINING_STAGES.keys()), value=list(TRAINING_STAGES.keys())[0], scale=1 |
|
) |
|
dataset_dir = gr.Textbox(value=DEFAULT_DATA_DIR, scale=1) |
|
dataset = gr.Dropdown(multiselect=True, allow_custom_value=True, scale=4) |
|
preview_elems = create_preview_box(dataset_dir, dataset) |
|
|
|
input_elems.update({training_stage, dataset_dir, dataset}) |
|
elem_dict.update(dict(training_stage=training_stage, dataset_dir=dataset_dir, dataset=dataset, **preview_elems)) |
|
|
|
with gr.Row(): |
|
learning_rate = gr.Textbox(value="5e-5") |
|
num_train_epochs = gr.Textbox(value="3.0") |
|
max_grad_norm = gr.Textbox(value="1.0") |
|
max_samples = gr.Textbox(value="100000") |
|
compute_type = gr.Dropdown(choices=["bf16", "fp16", "fp32", "pure_bf16"], value="bf16") |
|
|
|
input_elems.update({learning_rate, num_train_epochs, max_grad_norm, max_samples, compute_type}) |
|
elem_dict.update( |
|
dict( |
|
learning_rate=learning_rate, |
|
num_train_epochs=num_train_epochs, |
|
max_grad_norm=max_grad_norm, |
|
max_samples=max_samples, |
|
compute_type=compute_type, |
|
) |
|
) |
|
|
|
with gr.Row(): |
|
cutoff_len = gr.Slider(minimum=4, maximum=131072, value=1024, step=1) |
|
batch_size = gr.Slider(minimum=1, maximum=1024, value=2, step=1) |
|
gradient_accumulation_steps = gr.Slider(minimum=1, maximum=1024, value=8, step=1) |
|
val_size = gr.Slider(minimum=0, maximum=1, value=0, step=0.001) |
|
lr_scheduler_type = gr.Dropdown(choices=[scheduler.value for scheduler in SchedulerType], value="cosine") |
|
|
|
input_elems.update({cutoff_len, batch_size, gradient_accumulation_steps, val_size, lr_scheduler_type}) |
|
elem_dict.update( |
|
dict( |
|
cutoff_len=cutoff_len, |
|
batch_size=batch_size, |
|
gradient_accumulation_steps=gradient_accumulation_steps, |
|
val_size=val_size, |
|
lr_scheduler_type=lr_scheduler_type, |
|
) |
|
) |
|
|
|
with gr.Accordion(open=False) as extra_tab: |
|
with gr.Row(): |
|
logging_steps = gr.Slider(minimum=1, maximum=1000, value=5, step=5) |
|
save_steps = gr.Slider(minimum=10, maximum=5000, value=100, step=10) |
|
warmup_steps = gr.Slider(minimum=0, maximum=5000, value=0, step=1) |
|
neftune_alpha = gr.Slider(minimum=0, maximum=10, value=0, step=0.1) |
|
optim = gr.Textbox(value="adamw_torch") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
packing = gr.Checkbox() |
|
neat_packing = gr.Checkbox() |
|
|
|
with gr.Column(): |
|
train_on_prompt = gr.Checkbox() |
|
mask_history = gr.Checkbox() |
|
|
|
with gr.Column(): |
|
resize_vocab = gr.Checkbox() |
|
use_llama_pro = gr.Checkbox() |
|
|
|
with gr.Column(): |
|
shift_attn = gr.Checkbox() |
|
report_to = gr.Checkbox() |
|
|
|
input_elems.update( |
|
{ |
|
logging_steps, |
|
save_steps, |
|
warmup_steps, |
|
neftune_alpha, |
|
optim, |
|
packing, |
|
neat_packing, |
|
train_on_prompt, |
|
mask_history, |
|
resize_vocab, |
|
use_llama_pro, |
|
shift_attn, |
|
report_to, |
|
} |
|
) |
|
elem_dict.update( |
|
dict( |
|
extra_tab=extra_tab, |
|
logging_steps=logging_steps, |
|
save_steps=save_steps, |
|
warmup_steps=warmup_steps, |
|
neftune_alpha=neftune_alpha, |
|
optim=optim, |
|
packing=packing, |
|
neat_packing=neat_packing, |
|
train_on_prompt=train_on_prompt, |
|
mask_history=mask_history, |
|
resize_vocab=resize_vocab, |
|
use_llama_pro=use_llama_pro, |
|
shift_attn=shift_attn, |
|
report_to=report_to, |
|
) |
|
) |
|
|
|
with gr.Accordion(open=False) as freeze_tab: |
|
with gr.Row(): |
|
freeze_trainable_layers = gr.Slider(minimum=-128, maximum=128, value=2, step=1) |
|
freeze_trainable_modules = gr.Textbox(value="all") |
|
freeze_extra_modules = gr.Textbox() |
|
|
|
input_elems.update({freeze_trainable_layers, freeze_trainable_modules, freeze_extra_modules}) |
|
elem_dict.update( |
|
dict( |
|
freeze_tab=freeze_tab, |
|
freeze_trainable_layers=freeze_trainable_layers, |
|
freeze_trainable_modules=freeze_trainable_modules, |
|
freeze_extra_modules=freeze_extra_modules, |
|
) |
|
) |
|
|
|
with gr.Accordion(open=False) as lora_tab: |
|
with gr.Row(): |
|
lora_rank = gr.Slider(minimum=1, maximum=1024, value=8, step=1) |
|
lora_alpha = gr.Slider(minimum=1, maximum=2048, value=16, step=1) |
|
lora_dropout = gr.Slider(minimum=0, maximum=1, value=0, step=0.01) |
|
loraplus_lr_ratio = gr.Slider(minimum=0, maximum=64, value=0, step=0.01) |
|
create_new_adapter = gr.Checkbox() |
|
|
|
with gr.Row(): |
|
use_rslora = gr.Checkbox() |
|
use_dora = gr.Checkbox() |
|
use_pissa = gr.Checkbox() |
|
lora_target = gr.Textbox(scale=2) |
|
additional_target = gr.Textbox(scale=2) |
|
|
|
input_elems.update( |
|
{ |
|
lora_rank, |
|
lora_alpha, |
|
lora_dropout, |
|
loraplus_lr_ratio, |
|
create_new_adapter, |
|
use_rslora, |
|
use_dora, |
|
use_pissa, |
|
lora_target, |
|
additional_target, |
|
} |
|
) |
|
elem_dict.update( |
|
dict( |
|
lora_tab=lora_tab, |
|
lora_rank=lora_rank, |
|
lora_alpha=lora_alpha, |
|
lora_dropout=lora_dropout, |
|
loraplus_lr_ratio=loraplus_lr_ratio, |
|
create_new_adapter=create_new_adapter, |
|
use_rslora=use_rslora, |
|
use_dora=use_dora, |
|
use_pissa=use_pissa, |
|
lora_target=lora_target, |
|
additional_target=additional_target, |
|
) |
|
) |
|
|
|
with gr.Accordion(open=False) as rlhf_tab: |
|
with gr.Row(): |
|
pref_beta = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.01) |
|
pref_ftx = gr.Slider(minimum=0, maximum=10, value=0, step=0.01) |
|
pref_loss = gr.Dropdown(choices=["sigmoid", "hinge", "ipo", "kto_pair", "orpo", "simpo"], value="sigmoid") |
|
reward_model = gr.Dropdown(multiselect=True, allow_custom_value=True) |
|
with gr.Column(): |
|
ppo_score_norm = gr.Checkbox() |
|
ppo_whiten_rewards = gr.Checkbox() |
|
|
|
input_elems.update({pref_beta, pref_ftx, pref_loss, reward_model, ppo_score_norm, ppo_whiten_rewards}) |
|
elem_dict.update( |
|
dict( |
|
rlhf_tab=rlhf_tab, |
|
pref_beta=pref_beta, |
|
pref_ftx=pref_ftx, |
|
pref_loss=pref_loss, |
|
reward_model=reward_model, |
|
ppo_score_norm=ppo_score_norm, |
|
ppo_whiten_rewards=ppo_whiten_rewards, |
|
) |
|
) |
|
|
|
with gr.Accordion(open=False) as galore_tab: |
|
with gr.Row(): |
|
use_galore = gr.Checkbox() |
|
galore_rank = gr.Slider(minimum=1, maximum=1024, value=16, step=1) |
|
galore_update_interval = gr.Slider(minimum=1, maximum=1024, value=200, step=1) |
|
galore_scale = gr.Slider(minimum=0, maximum=1, value=0.25, step=0.01) |
|
galore_target = gr.Textbox(value="all") |
|
|
|
input_elems.update({use_galore, galore_rank, galore_update_interval, galore_scale, galore_target}) |
|
elem_dict.update( |
|
dict( |
|
galore_tab=galore_tab, |
|
use_galore=use_galore, |
|
galore_rank=galore_rank, |
|
galore_update_interval=galore_update_interval, |
|
galore_scale=galore_scale, |
|
galore_target=galore_target, |
|
) |
|
) |
|
|
|
with gr.Accordion(open=False) as badam_tab: |
|
with gr.Row(): |
|
use_badam = gr.Checkbox() |
|
badam_mode = gr.Dropdown(choices=["layer", "ratio"], value="layer") |
|
badam_switch_mode = gr.Dropdown(choices=["ascending", "descending", "random", "fixed"], value="ascending") |
|
badam_switch_interval = gr.Slider(minimum=1, maximum=1024, value=50, step=1) |
|
badam_update_ratio = gr.Slider(minimum=0, maximum=1, value=0.05, step=0.01) |
|
|
|
input_elems.update({use_badam, badam_mode, badam_switch_mode, badam_switch_interval, badam_update_ratio}) |
|
elem_dict.update( |
|
dict( |
|
badam_tab=badam_tab, |
|
use_badam=use_badam, |
|
badam_mode=badam_mode, |
|
badam_switch_mode=badam_switch_mode, |
|
badam_switch_interval=badam_switch_interval, |
|
badam_update_ratio=badam_update_ratio, |
|
) |
|
) |
|
|
|
with gr.Row(): |
|
cmd_preview_btn = gr.Button() |
|
arg_save_btn = gr.Button() |
|
arg_load_btn = gr.Button() |
|
start_btn = gr.Button(variant="primary") |
|
stop_btn = gr.Button(variant="stop") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
with gr.Row(): |
|
current_time = gr.Textbox(visible=False, interactive=False) |
|
output_dir = gr.Dropdown(allow_custom_value=True) |
|
config_path = gr.Dropdown(allow_custom_value=True) |
|
|
|
with gr.Row(): |
|
device_count = gr.Textbox(value=str(get_device_count() or 1), interactive=False) |
|
ds_stage = gr.Dropdown(choices=["none", "2", "3"], value="none") |
|
ds_offload = gr.Checkbox() |
|
|
|
with gr.Row(): |
|
resume_btn = gr.Checkbox(visible=False, interactive=False) |
|
progress_bar = gr.Slider(visible=False, interactive=False) |
|
|
|
with gr.Row(): |
|
output_box = gr.Markdown() |
|
|
|
with gr.Column(scale=1): |
|
loss_viewer = gr.Plot() |
|
|
|
input_elems.update({output_dir, config_path, ds_stage, ds_offload}) |
|
elem_dict.update( |
|
dict( |
|
cmd_preview_btn=cmd_preview_btn, |
|
arg_save_btn=arg_save_btn, |
|
arg_load_btn=arg_load_btn, |
|
start_btn=start_btn, |
|
stop_btn=stop_btn, |
|
current_time=current_time, |
|
output_dir=output_dir, |
|
config_path=config_path, |
|
device_count=device_count, |
|
ds_stage=ds_stage, |
|
ds_offload=ds_offload, |
|
resume_btn=resume_btn, |
|
progress_bar=progress_bar, |
|
output_box=output_box, |
|
loss_viewer=loss_viewer, |
|
) |
|
) |
|
output_elems = [output_box, progress_bar, loss_viewer] |
|
|
|
cmd_preview_btn.click(engine.runner.preview_train, input_elems, output_elems, concurrency_limit=None) |
|
start_btn.click(engine.runner.run_train, input_elems, output_elems) |
|
stop_btn.click(engine.runner.set_abort) |
|
resume_btn.change(engine.runner.monitor, outputs=output_elems, concurrency_limit=None) |
|
|
|
lang = engine.manager.get_elem_by_id("top.lang") |
|
model_name: "gr.Dropdown" = engine.manager.get_elem_by_id("top.model_name") |
|
finetuning_type: "gr.Dropdown" = engine.manager.get_elem_by_id("top.finetuning_type") |
|
|
|
arg_save_btn.click(engine.runner.save_args, input_elems, output_elems, concurrency_limit=None) |
|
arg_load_btn.click( |
|
engine.runner.load_args, [lang, config_path], list(input_elems) + [output_box], concurrency_limit=None |
|
) |
|
|
|
dataset.focus(list_datasets, [dataset_dir, training_stage], [dataset], queue=False) |
|
training_stage.change(change_stage, [training_stage], [dataset, packing], queue=False) |
|
reward_model.focus(list_checkpoints, [model_name, finetuning_type], [reward_model], queue=False) |
|
model_name.change(list_output_dirs, [model_name, finetuning_type, current_time], [output_dir], queue=False) |
|
finetuning_type.change(list_output_dirs, [model_name, finetuning_type, current_time], [output_dir], queue=False) |
|
output_dir.change( |
|
list_output_dirs, [model_name, finetuning_type, current_time], [output_dir], concurrency_limit=None |
|
) |
|
output_dir.input( |
|
engine.runner.check_output_dir, |
|
[lang, model_name, finetuning_type, output_dir], |
|
list(input_elems) + [output_box], |
|
concurrency_limit=None, |
|
) |
|
config_path.change(list_config_paths, [current_time], [config_path], queue=False) |
|
|
|
return elem_dict |
|
|