File size: 10,359 Bytes
251bc20
1ee1019
7b7a48e
98192a8
7b7a48e
1ee1019
 
98192a8
1ee1019
 
98192a8
1ee1019
 
 
 
b9ddb88
1ee1019
 
 
 
 
 
251bc20
 
 
 
 
 
 
 
 
 
98192a8
251bc20
98192a8
 
 
 
 
 
251bc20
 
98192a8
251bc20
98192a8
251bc20
98192a8
 
 
251bc20
 
98192a8
c8cfc9b
251bc20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ee1019
 
 
 
 
 
 
98192a8
1ee1019
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98192a8
 
1ee1019
 
 
 
 
 
 
 
 
 
 
 
 
251bc20
1ee1019
 
 
 
 
 
 
251bc20
 
 
 
 
 
 
 
98192a8
 
251bc20
1ee1019
98192a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
875c7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
## MERaLiON-AudioLLM vLLM Serving

> [!IMPORTANT]
> MERaLiON-AudioLLM is trained on 30 second audios. This vllm integration supports at most 4mins audio input. 

### Set up Environment

MERaLiON-AudioLLM requires vLLM version `6.4.post1` and transformers `4.46.3`

```bash
pip install vllm==6.4.post1
pip install transformers==4.46.3
```

As the [vLLM documentation](https://docs.vllm.ai/en/stable/models/adding_model.html#out-of-tree-model-integration) recommends, 
we provide a way to register our model via [vLLM plugins](https://docs.vllm.ai/en/stable/design/plugin_system.html#plugin-system). Simply install by running the following command.


```bash
python install .
```


### Offline Inference

Here is an example of offline inference using our custom vLLM class. 

```python
import torch
from vllm import ModelRegistry, LLM, SamplingParams
from vllm.assets.audio import AudioAsset

model_name = "MERaLiON/MERaLiON-AudioLLM-Whisper-SEA-LION"

llm = LLM(model=model_name,
          tokenizer=model_name,
          limit_mm_per_prompt={"audio": 1},
          trust_remote_code=True,
          dtype=torch.bfloat16
          )

audio_asset = AudioAsset("mary_had_lamb")

question= "Please trancribe this speech."
audio_in_prompt = "Given the following audio context: <SpeechHere>\n\n"

prompt = ("<start_of_turn>user\n"
          f"{audio_in_prompt}Text instruction: {question}<end_of_turn>\n"
          "<start_of_turn>model\n")

sampling_params = SamplingParams(
  temperature=1,
  top_p=0.9,
  top_k=50,
  repetition_penalty=1.1,
  seed=42,
  max_tokens=1024,
  stop_token_ids=None
)

mm_data = {"audio": [audio_asset.audio_and_sample_rate]}
inputs = {"prompt": prompt, "multi_modal_data": mm_data}

# batch inference
inputs = [inputs] * 2

outputs = llm.generate(inputs, sampling_params=sampling_params)

for o in outputs:
    generated_text = o.outputs[0].text
    print(generated_text)
```

### Serving

Here is an example to start the server via the `vllm serve` command.

```bash
export HF_TOKEN=<your-hf-token>

vllm serve MERaLiON/MERaLiON-AudioLLM-Whisper-SEA-LION --tokenizer MERaLiON/MERaLiON-AudioLLM-Whisper-SEA-LION --trust-remote-code --dtype bfloat16 --port 8000
```

To call the server, you can use the [official OpenAI client](https://github.com/openai/openai-python):

```python
import base64

from openai import OpenAI


def get_client(api_key="EMPTY", base_url="http://localhost:8000/v1"):
    client = OpenAI(
        api_key=api_key,
        base_url=base_url,
    )

    models = client.models.list()
    model_name = models.data[0].id
    return client, model_name


def get_response(text_input, base64_audio_input, **params):
    response_obj = client.chat.completions.create(
        messages=[{
            "role":
            "user",
            "content": [
                {
                    "type": "text",
                    "text": f"Text instruction: {text_input}"
                },
                {
                    "type": "audio_url",
                    "audio_url": {
                        "url": f"data:audio/ogg;base64,{base64_audio_input}"
                    },
                },
            ],
        }],
        **params
    )
    return response_obj


#specify input and params
possible_text_inputs = [
    "Please transcribe this speech.",
    "Please summarise the content of this speech.",
    "Please follow the instruction in this speech."
]

audio_bytes = open(f"/path/to/wav/or/mp3/file", "rb").read()
audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')

# use the port number of vllm service.
client, model_name = get_client(base_url="http://localhost:8000/v1")

generation_parameters = dict(
    model=model_name,
    max_completion_tokens=1024,
    temperature=1,
    top_p=9,
    extra_body={
        "repetition_penalty": 1.1,
        "top_k": 50,
        "length_penalty": 1.0
    },
    seed=42
)


response_obj = get_response(possible_text_inputs[0], audio_base64, **generation_parameters)
print(response_obj.choices[0].message.content)
```

Alternatively, you can try calling the server with curl, see the example below. We recommend using the generation config in the json body to fully reproduce the performance.

```bash
curl http://localhost:8000/v1/chat/completions \
    -H "Content-Type: application/json" \
    -d '{
        "model": "MERaLiON/MERaLiON-AudioLLM-Whisper-SEA-LION",
        "messages": [
            {"role": "user", 
            "content": [
                {"type": "text", "text": "Text instruction: <your-instruction>"},
                {"type": "audio_url", "audio_url": {"url": "data:audio/ogg;base64,<your-audio-base64-string>"}}
            ]
            }
        ],
        "max_completion_tokens": 1024,
        "temperature": 1, 
        "top_p": 9, 
        "seed": 42 
    }'
```


### Inference Performance Benchmark

We report average **Time To First Token** (**TTFT**, unit: ms) together with **Inter-Token Latency** (**ITL**, unit: ms) with vLLM instance running on H100 and A100 GPU respectively.  

Input: 120 speech recognition prompts for each input audio length and concurrency combination.\
Output: The corresponding output length of these prompts.


<p style="text-align: center;"><strong>Single NVIDIA H100 GPU (80GiB GPU memory)</strong></p>

<table style="margin: 0px auto;">
  <thead>
    <tr>
      <th>Input Audio Length</th>
      <th style="text-align: center;" colspan="2">30s</th>
      <th style="text-align: center;" colspan="2">1min</th>
      <th style="text-align: center;" colspan="2">2mins</th>
    </tr>
    <tr>
      <th>Concurrent requests</th>
      <th>TTFT (ms)</th>
      <th>ITL (ms)</th>
      <th>TTFT (ms)</th>
      <th>ITL (ms)</th>
      <th>TTFT (ms)</th>
      <th>ITL (ms)</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>1</td>
      <td>85.8</td>
      <td>9.9</td>
      <td>126.4</td>
      <td>9.6</td>
      <td>214.5</td>
      <td>9.7</td>
    </tr>
    <tr>
      <td>4</td>
      <td>96.9</td>
      <td>11.4</td>
      <td>159.6</td>
      <td>11.1</td>
      <td>258.1</td>
      <td>11.2</td>
    </tr>
    <tr>
      <td>8</td>
      <td>109.6</td>
      <td>13.0</td>
      <td>206.5</td>
      <td>12.7</td>
      <td>261.9</td>
      <td>13.0</td>
    </tr>
    <tr>
      <td>16</td>
      <td>149.9</td>
      <td>16.3</td>
      <td>236.7</td>
      <td>16.2</td>
      <td>299.0</td>
      <td>16.8</td>
    </tr>
  </tbody>
</table>

<p style="text-align: center;"><strong>Single NVIDIA A100 GPU (40GiB GPU memory)</strong></p>

<table style="margin: 0px auto;">
  <thead>
    <tr>
      <th>Input Audio Length</th>
      <th style="text-align: center;" colspan="2">30s</th>
      <th style="text-align: center;" colspan="2">1min</th>
      <th style="text-align: center;" colspan="2">2mins</th>
    </tr>
    <tr>
      <th>Concurrent requests</th>
      <th>TTFT (ms)</th>
      <th>ITL (ms)</th>
      <th>TTFT (ms)</th>
      <th>ITL (ms)</th>
      <th>TTFT (ms)</th>
      <th>ITL (ms)</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>1</td>
      <td>162.6</td>
      <td>18.0</td>
      <td>195.0</td>
      <td>18.3</td>
      <td>309.9</td>
      <td>18.6</td>
    </tr>
    <tr>
      <td>4</td>
      <td>159.1</td>
      <td>21.1</td>
      <td>226.9</td>
      <td>21.2</td>
      <td>329.5</td>
      <td>21.6</td>
    </tr>
    <tr>
      <td>8</td>
      <td>176.5</td>
      <td>25.2</td>
      <td>305.4</td>
      <td>24.8</td>
      <td>352.5</td>
      <td>25.5</td>
    </tr>
    <tr>
      <td>16</td>
      <td>196.0</td>
      <td>32.0</td>
      <td>329.4</td>
      <td>31.9</td>
      <td>414.7</td>
      <td>33.4</td>
    </tr>
  </tbody>
</table>

<p style="text-align: center;"><strong>Single NVIDIA L20 GPU (48GB GDDR6 GPU memory)</strong></p>

<table style="margin: 0px auto;">
  <thead>
    <tr>
      <th>Input Audio Length</th>
      <th style="text-align: center;" colspan="2">30s</th>
      <th style="text-align: center;" colspan="2">1min</th>
      <th style="text-align: center;" colspan="2">2mins</th>
      <!-- <th style="text-align: center;" colspan="2">3mins</th> -->
      <!-- <th style="text-align: center;" colspan="2">4mins</th> -->
      <!-- <th style="text-align: center;" colspan="2">5mins</th> -->
    </tr>
    <tr>
      <th>Concurrent requests</th>
      <th>TTFT (ms)</th>
      <th>ITL (ms)</th>
      <th>TTFT (ms)</th>
      <th>ITL (ms)</th>
      <th>TTFT (ms)</th>
      <th>ITL (ms)</th>
      <!-- <th>TTFT (ms)</th> -->
      <!-- <th>ITL (ms)</th> -->
      <!-- <th>TTFT (ms)</th> -->
      <!-- <th>ITL (ms)</th> -->
      <!-- <th>TTFT (ms)</th> -->
      <!-- <th>ITL (ms)</th> -->
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>1</td>
      <td>150.7</td><td>26.9</td>
      <td>213.7</td><td>27.3</td>
      <td>377.6</td><td>27.5</td>
      <!-- <td>499.0</td><td>27.8</td> -->
      <!-- <td>598.9</td><td>27.8</td> -->
      <!-- <td>642.6</td><td>27.8</td> -->
    </tr>
    <tr>
      <td>4</td>
      <td>163.6</td><td>29.3</td>
      <td>225.5</td><td>29.4</td>
      <td>395.3</td><td>29.5</td>
      <!-- <td>516.5</td><td>29.7</td> -->
      <!-- <td>621.4</td><td>29.7</td> -->
      <!-- <td>666.2</td><td>29.8</td> -->
    </tr>
    <tr>
      <td>8</td>
      <td>176.5</td><td>31.2</td>
      <td>239.8</td><td>31.2</td>
      <td>420.2</td><td>31.4</td>
      <!-- <td>540.6</td><td>31.6</td> -->
      <!-- <td>655.7</td><td>31.8</td> -->
      <!-- <td>688.8</td><td>31.9</td> -->
    </tr>
    <tr>
      <td>16</td>
      <td>187.9</td><td>34.4</td>
      <td>269.1</td><td>34.3</td>
      <td>454.5</td><td>34.7</td>
      <!-- <td>590.6</td><td>34.8</td> -->
      <!-- <td>690.9</td><td>35.5</td> -->
      <!-- <td>735.0</td><td>35.0</td> -->
    </tr>
    <!-- <tr>
      <td>32</td>
      <td>237.3</td><td>43.4</td>
      <td>315.3</td><td>40.1</td>
      <td>499.9</td><td>42.5</td> -->
      <!-- <td>644.1</td><td>41.3</td> -->
      <!-- <td>735.9</td><td>41.7</td> -->
      <!-- <td>803.7</td><td>41.2</td> -->
    <!-- </tr> -->
    <!-- <tr>
      <td>64</td>
      <td>301.5</td><td>59.3</td>
      <td>364.1</td><td>54.1</td>
      <td>581.0</td><td>57.4</td> -->
      <!-- <td>700.8</td><td>55.4</td> -->
      <!-- <td>825.2</td><td>56.2</td> -->
      <!-- <td>899.0</td><td>55.7</td> -->
    <!-- </tr> -->
  </tbody>
</table>