File size: 1,788 Bytes
d807217
 
 
 
 
 
 
 
 
 
 
 
4ad3193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cfb386
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: mit
datasets:
- FronkonGames/steam-games-dataset
metrics:
- accuracy
base_model:
- google/efficientnet-b3
pipeline_tag: image-classification
tags:
- game
---
# ๐ŸŽฎ GameNet-1

**GameNet-1** is a deep learning-based computer vision system designed to recognize video games based on their cover art or in-game screenshots. Built using EfficientNet and trained on a curated dataset of popular Steam games, the model predicts both the **game name** and its **genre(s)**.

---

## ๐Ÿš€ Features

- ๐Ÿ” Recognizes games from screenshots or cover images
- ๐Ÿง  Powered by EfficientNetB3 for high accuracy
- ๐Ÿ—‚๏ธ Trained only on **popular games** with over 2M estimated owners
- ๐ŸŽฏ Fine-tuned and augmented for better generalization
- ๐Ÿ“Š Shows prediction confidence alongside game metadata

---

## ๐Ÿ“ Dataset

- Source: [Steam Games Dataset on Kaggle](https://www.kaggle.com/datasets/fronkongames/steam-games-dataset)
- Filtered for popular games with over 2 million estimated owners
- Images:
  - Header cover image
  - 5 in-game screenshots (JPEG only)

---

## ๐Ÿ—๏ธ Model Architecture

- **Base**: `EfficientNetB3` pretrained on ImageNet
- **Input Size**: 300x300 RGB
- **Top Layers**:
  - `GlobalAveragePooling2D`
  - `Dropout` (0.4 & 0.2)
  - `Dense(256, relu)`
  - `Dense(n_classes, softmax)`
- **Training**:
  - Phase 1: Frozen base
  - Phase 2: Fine-tuned base (lower LR)

---

## ๐Ÿ“ˆ Performance

- Accuracy (val set): 30%
- Trained using:
  - `categorical_crossentropy` loss
  - `Adam` optimizer (1e-3 for frozen, 1e-5 for fine-tune)
  - Real-time data augmentation (`ImageDataGenerator`)

---

## ๐Ÿงช Inference

### Try It Out
[GameNET-1 API Endpoint:
](https://mas-ai-0000-gamenet-1.hf.space/predict)

[DOCS:
](https://mas-ai-0000-gamenet-1.hf.space/docs)