Shahradmz commited on
Commit
2901fae
·
verified ·
1 Parent(s): f7418e2

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +5 -0
  2. dataset-0/all_results.json +17 -0
  3. dataset-0/checkpoint-1064/added_tokens.json +5 -0
  4. dataset-0/checkpoint-1064/config.json +29 -0
  5. dataset-0/checkpoint-1064/generation_config.json +14 -0
  6. dataset-0/checkpoint-1064/global_step1064/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  7. dataset-0/checkpoint-1064/global_step1064/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  8. dataset-0/checkpoint-1064/global_step1064/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  9. dataset-0/checkpoint-1064/global_step1064/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  10. dataset-0/checkpoint-1064/global_step1064/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  11. dataset-0/checkpoint-1064/global_step1064/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  12. dataset-0/checkpoint-1064/global_step1064/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  13. dataset-0/checkpoint-1064/global_step1064/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  14. dataset-0/checkpoint-1064/latest +1 -0
  15. dataset-0/checkpoint-1064/merges.txt +0 -0
  16. dataset-0/checkpoint-1064/model.safetensors +3 -0
  17. dataset-0/checkpoint-1064/rng_state_0.pth +3 -0
  18. dataset-0/checkpoint-1064/rng_state_1.pth +3 -0
  19. dataset-0/checkpoint-1064/rng_state_2.pth +3 -0
  20. dataset-0/checkpoint-1064/rng_state_3.pth +3 -0
  21. dataset-0/checkpoint-1064/scheduler.pt +3 -0
  22. dataset-0/checkpoint-1064/special_tokens_map.json +20 -0
  23. dataset-0/checkpoint-1064/tokenizer.json +3 -0
  24. dataset-0/checkpoint-1064/tokenizer_config.json +44 -0
  25. dataset-0/checkpoint-1064/trainer_state.json +913 -0
  26. dataset-0/checkpoint-1064/training_args.bin +3 -0
  27. dataset-0/checkpoint-1064/vocab.json +0 -0
  28. dataset-0/checkpoint-1064/zero_to_fp32.py +760 -0
  29. dataset-0/checkpoint-300/added_tokens.json +5 -0
  30. dataset-0/checkpoint-300/config.json +29 -0
  31. dataset-0/checkpoint-300/generation_config.json +14 -0
  32. dataset-0/checkpoint-300/global_step300/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  33. dataset-0/checkpoint-300/global_step300/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  34. dataset-0/checkpoint-300/global_step300/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  35. dataset-0/checkpoint-300/global_step300/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  36. dataset-0/checkpoint-300/global_step300/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  37. dataset-0/checkpoint-300/global_step300/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  38. dataset-0/checkpoint-300/global_step300/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  39. dataset-0/checkpoint-300/global_step300/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  40. dataset-0/checkpoint-300/latest +1 -0
  41. dataset-0/checkpoint-300/merges.txt +0 -0
  42. dataset-0/checkpoint-300/model.safetensors +3 -0
  43. dataset-0/checkpoint-300/rng_state_0.pth +3 -0
  44. dataset-0/checkpoint-300/rng_state_1.pth +3 -0
  45. dataset-0/checkpoint-300/rng_state_2.pth +3 -0
  46. dataset-0/checkpoint-300/rng_state_3.pth +3 -0
  47. dataset-0/checkpoint-300/scheduler.pt +3 -0
  48. dataset-0/checkpoint-300/special_tokens_map.json +20 -0
  49. dataset-0/checkpoint-300/tokenizer.json +3 -0
  50. dataset-0/checkpoint-300/tokenizer_config.json +44 -0
.gitattributes CHANGED
@@ -33,3 +33,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ dataset-0/checkpoint-1064/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ dataset-0/checkpoint-300/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
+ dataset-0/checkpoint-600/tokenizer.json filter=lfs diff=lfs merge=lfs -text
39
+ dataset-0/checkpoint-900/tokenizer.json filter=lfs diff=lfs merge=lfs -text
40
+ dataset-0/last/tokenizer.json filter=lfs diff=lfs merge=lfs -text
dataset-0/all_results.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset": 0,
3
+ "epoch": 4.0,
4
+ "eval_logits/chosen": -2.9694149494171143,
5
+ "eval_logits/rejected": -4.259973526000977,
6
+ "eval_logps/chosen": -733.276611328125,
7
+ "eval_logps/rejected": -979.574462890625,
8
+ "eval_loss": 1.8394471501537168e-09,
9
+ "eval_rewards/accuracies": 1.0,
10
+ "eval_rewards/chosen": 8.114361763000488,
11
+ "eval_rewards/margins": 60.553192138671875,
12
+ "eval_rewards/rejected": -52.42021179199219,
13
+ "eval_runtime": 8.4622,
14
+ "eval_samples_per_second": 177.258,
15
+ "eval_score": -0.7999978065490723,
16
+ "eval_steps_per_second": 5.554
17
+ }
dataset-0/checkpoint-1064/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
dataset-0/checkpoint-1064/config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2-0.5B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 896,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 4864,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 24,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 14,
17
+ "num_hidden_layers": 24,
18
+ "num_key_value_heads": 2,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": 32768,
23
+ "tie_word_embeddings": true,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.49.0",
26
+ "use_cache": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 151936
29
+ }
dataset-0/checkpoint-1064/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.1,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.49.0"
14
+ }
dataset-0/checkpoint-1064/global_step1064/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb41c124e0049d045f80beb7f42c838172839ce64faa603b39c4a71ed3334741
3
+ size 1482103280
dataset-0/checkpoint-1064/global_step1064/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9317be36b0188b7d0cabd74bc88a37eae8583f1eb9fca8452c732bfb863ac89e
3
+ size 1482103280
dataset-0/checkpoint-1064/global_step1064/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c871fe241e3ee0c36dbf60f2197b7296f1fe8467072cd8bac69f469a67b8d12
3
+ size 1482103280
dataset-0/checkpoint-1064/global_step1064/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd37c1ec03f596df7e6ab27c8571fbd9176aa9cb357983058b4f95732e5555c2
3
+ size 1482103280
dataset-0/checkpoint-1064/global_step1064/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:273474a17de910f2ce838d710180ddd4cf5c5d0c045db20b089073b00b418a38
3
+ size 142728
dataset-0/checkpoint-1064/global_step1064/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87df774a8a68d113a776d38e560d20d3a3c3eb0e451a21b14e8dfc9901c50b7e
3
+ size 142664
dataset-0/checkpoint-1064/global_step1064/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f92a45d4d321ce6bbaa5e333c0f876250f8f234ecef3b53dff49cd3bd5602a81
3
+ size 142664
dataset-0/checkpoint-1064/global_step1064/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:709f022824915a9e2a3db761537e1ba5da9b9ee138ea07043e5de559b14be90b
3
+ size 142664
dataset-0/checkpoint-1064/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step1064
dataset-0/checkpoint-1064/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
dataset-0/checkpoint-1064/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f479a6e57886603c4731130ffc03926fa41d8302d97aeff35935bdc6de8a4b0
3
+ size 988097824
dataset-0/checkpoint-1064/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb7ef461173a038e154f7168466a1a1cbf011caf013ac2c15a132c95d2c27fa3
3
+ size 15024
dataset-0/checkpoint-1064/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5de94b1cfa98d2197934e9a8b4cf2db1290ca27f32e59d5f9055cd84d082a53
3
+ size 15024
dataset-0/checkpoint-1064/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0eeeae7b81b3ee26f32948132bc00a7bdb72d1903214f505d2fa94fda0c0753c
3
+ size 15024
dataset-0/checkpoint-1064/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7da27fce9c3ca879a62610ae6a1a15d90818bbc1dd3f4a136dbb97608a01015
3
+ size 15024
dataset-0/checkpoint-1064/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa7b3c71b5f5f0d87503ac4d850be0fea1a0582e2734991336a1973c6c64df67
3
+ size 1064
dataset-0/checkpoint-1064/special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|im_end|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
dataset-0/checkpoint-1064/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcfe42da0a4497e8b2b172c1f9f4ec423a46dc12907f4349c55025f670422ba9
3
+ size 11418266
dataset-0/checkpoint-1064/tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|im_end|>",
37
+ "errors": "replace",
38
+ "extra_special_tokens": {},
39
+ "model_max_length": 32768,
40
+ "pad_token": "<|endoftext|>",
41
+ "split_special_tokens": false,
42
+ "tokenizer_class": "Qwen2Tokenizer",
43
+ "unk_token": null
44
+ }
dataset-0/checkpoint-1064/trainer_state.json ADDED
@@ -0,0 +1,913 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 4.0,
5
+ "eval_steps": 200,
6
+ "global_step": 1064,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.07518796992481203,
13
+ "grad_norm": 0.00031717625653774825,
14
+ "learning_rate": 4.906015037593986e-06,
15
+ "logits/chosen": -3.08984375,
16
+ "logits/rejected": -3.359375,
17
+ "logps/chosen": -759.5999755859375,
18
+ "logps/rejected": -601.7999877929688,
19
+ "loss": 0.0505,
20
+ "rewards/accuracies": 0.949999988079071,
21
+ "rewards/chosen": 3.9212889671325684,
22
+ "rewards/margins": 19.23046875,
23
+ "rewards/rejected": -15.315332412719727,
24
+ "step": 20
25
+ },
26
+ {
27
+ "epoch": 0.15037593984962405,
28
+ "grad_norm": 2.5674383538843824e-13,
29
+ "learning_rate": 4.81203007518797e-06,
30
+ "logits/chosen": -3.37890625,
31
+ "logits/rejected": -3.901562452316284,
32
+ "logps/chosen": -797.4000244140625,
33
+ "logps/rejected": -834.2000122070312,
34
+ "loss": 0.0018,
35
+ "rewards/accuracies": 0.9984375238418579,
36
+ "rewards/chosen": 0.5521484613418579,
37
+ "rewards/margins": 38.98125076293945,
38
+ "rewards/rejected": -38.412498474121094,
39
+ "step": 40
40
+ },
41
+ {
42
+ "epoch": 0.22556390977443608,
43
+ "grad_norm": 4.184555188916154e-12,
44
+ "learning_rate": 4.718045112781955e-06,
45
+ "logits/chosen": -3.237499952316284,
46
+ "logits/rejected": -4.165625095367432,
47
+ "logps/chosen": -774.5999755859375,
48
+ "logps/rejected": -944.7999877929688,
49
+ "loss": 0.0001,
50
+ "rewards/accuracies": 1.0,
51
+ "rewards/chosen": 3.255664110183716,
52
+ "rewards/margins": 53.625,
53
+ "rewards/rejected": -50.36249923706055,
54
+ "step": 60
55
+ },
56
+ {
57
+ "epoch": 0.3007518796992481,
58
+ "grad_norm": 3.674299650107461e-07,
59
+ "learning_rate": 4.62406015037594e-06,
60
+ "logits/chosen": -3.0601563453674316,
61
+ "logits/rejected": -4.301562309265137,
62
+ "logps/chosen": -744.2000122070312,
63
+ "logps/rejected": -968.0,
64
+ "loss": 0.0,
65
+ "rewards/accuracies": 1.0,
66
+ "rewards/chosen": 6.635937690734863,
67
+ "rewards/margins": 58.375,
68
+ "rewards/rejected": -51.724998474121094,
69
+ "step": 80
70
+ },
71
+ {
72
+ "epoch": 0.37593984962406013,
73
+ "grad_norm": 2.9469468290533765e-13,
74
+ "learning_rate": 4.530075187969925e-06,
75
+ "logits/chosen": -3.035937547683716,
76
+ "logits/rejected": -4.3359375,
77
+ "logps/chosen": -754.0,
78
+ "logps/rejected": -981.0,
79
+ "loss": 0.0,
80
+ "rewards/accuracies": 1.0,
81
+ "rewards/chosen": 6.212500095367432,
82
+ "rewards/margins": 58.912498474121094,
83
+ "rewards/rejected": -52.724998474121094,
84
+ "step": 100
85
+ },
86
+ {
87
+ "epoch": 0.45112781954887216,
88
+ "grad_norm": 2.450421719466682e-10,
89
+ "learning_rate": 4.43609022556391e-06,
90
+ "logits/chosen": -3.0367188453674316,
91
+ "logits/rejected": -4.3203125,
92
+ "logps/chosen": -740.0,
93
+ "logps/rejected": -961.7999877929688,
94
+ "loss": 0.0,
95
+ "rewards/accuracies": 1.0,
96
+ "rewards/chosen": 6.285937309265137,
97
+ "rewards/margins": 57.474998474121094,
98
+ "rewards/rejected": -51.1875,
99
+ "step": 120
100
+ },
101
+ {
102
+ "epoch": 0.5263157894736842,
103
+ "grad_norm": 1.6351303999698253e-10,
104
+ "learning_rate": 4.342105263157895e-06,
105
+ "logits/chosen": -3.0234375,
106
+ "logits/rejected": -4.3046875,
107
+ "logps/chosen": -754.0,
108
+ "logps/rejected": -969.4000244140625,
109
+ "loss": 0.0,
110
+ "rewards/accuracies": 1.0,
111
+ "rewards/chosen": 6.207812309265137,
112
+ "rewards/margins": 57.662498474121094,
113
+ "rewards/rejected": -51.412498474121094,
114
+ "step": 140
115
+ },
116
+ {
117
+ "epoch": 0.6015037593984962,
118
+ "grad_norm": 1.5915083665281199e-09,
119
+ "learning_rate": 4.24812030075188e-06,
120
+ "logits/chosen": -3.03125,
121
+ "logits/rejected": -4.318749904632568,
122
+ "logps/chosen": -748.2000122070312,
123
+ "logps/rejected": -958.7999877929688,
124
+ "loss": 0.0,
125
+ "rewards/accuracies": 1.0,
126
+ "rewards/chosen": 6.248437404632568,
127
+ "rewards/margins": 57.525001525878906,
128
+ "rewards/rejected": -51.25,
129
+ "step": 160
130
+ },
131
+ {
132
+ "epoch": 0.6766917293233082,
133
+ "grad_norm": 4.297014302694241e-12,
134
+ "learning_rate": 4.1541353383458646e-06,
135
+ "logits/chosen": -3.0406250953674316,
136
+ "logits/rejected": -4.279687404632568,
137
+ "logps/chosen": -741.4000244140625,
138
+ "logps/rejected": -961.4000244140625,
139
+ "loss": 0.0132,
140
+ "rewards/accuracies": 0.9906250238418579,
141
+ "rewards/chosen": 6.785937309265137,
142
+ "rewards/margins": 57.4375,
143
+ "rewards/rejected": -50.625,
144
+ "step": 180
145
+ },
146
+ {
147
+ "epoch": 0.7518796992481203,
148
+ "grad_norm": 9.095973454791659e-12,
149
+ "learning_rate": 4.06015037593985e-06,
150
+ "logits/chosen": -3.055468797683716,
151
+ "logits/rejected": -4.318749904632568,
152
+ "logps/chosen": -733.0,
153
+ "logps/rejected": -968.0,
154
+ "loss": 0.0,
155
+ "rewards/accuracies": 1.0,
156
+ "rewards/chosen": 7.356249809265137,
157
+ "rewards/margins": 59.5625,
158
+ "rewards/rejected": -52.224998474121094,
159
+ "step": 200
160
+ },
161
+ {
162
+ "epoch": 0.7518796992481203,
163
+ "eval_logits/chosen": -3.058178186416626,
164
+ "eval_logits/rejected": -4.299867153167725,
165
+ "eval_logps/chosen": -741.7021484375,
166
+ "eval_logps/rejected": -972.0850830078125,
167
+ "eval_loss": 2.180002622864663e-09,
168
+ "eval_rewards/accuracies": 1.0,
169
+ "eval_rewards/chosen": 7.262632846832275,
170
+ "eval_rewards/margins": 58.87765884399414,
171
+ "eval_rewards/rejected": -51.62765884399414,
172
+ "eval_runtime": 8.4937,
173
+ "eval_samples_per_second": 176.601,
174
+ "eval_score": -0.6606304049491882,
175
+ "eval_steps_per_second": 5.533,
176
+ "step": 200
177
+ },
178
+ {
179
+ "epoch": 0.8270676691729323,
180
+ "grad_norm": 2.3694597465927517e-14,
181
+ "learning_rate": 3.966165413533835e-06,
182
+ "logits/chosen": -3.057812452316284,
183
+ "logits/rejected": -4.2890625,
184
+ "logps/chosen": -739.0,
185
+ "logps/rejected": -973.4000244140625,
186
+ "loss": 0.0,
187
+ "rewards/accuracies": 1.0,
188
+ "rewards/chosen": 7.339062690734863,
189
+ "rewards/margins": 58.67499923706055,
190
+ "rewards/rejected": -51.32500076293945,
191
+ "step": 220
192
+ },
193
+ {
194
+ "epoch": 0.9022556390977443,
195
+ "grad_norm": 4.7239515256796625e-09,
196
+ "learning_rate": 3.87218045112782e-06,
197
+ "logits/chosen": -3.0648436546325684,
198
+ "logits/rejected": -4.301562309265137,
199
+ "logps/chosen": -739.4000244140625,
200
+ "logps/rejected": -980.4000244140625,
201
+ "loss": 0.0,
202
+ "rewards/accuracies": 1.0,
203
+ "rewards/chosen": 7.296875,
204
+ "rewards/margins": 59.57500076293945,
205
+ "rewards/rejected": -52.25,
206
+ "step": 240
207
+ },
208
+ {
209
+ "epoch": 0.9774436090225563,
210
+ "grad_norm": 1.1010824468107971e-09,
211
+ "learning_rate": 3.778195488721805e-06,
212
+ "logits/chosen": -3.059375047683716,
213
+ "logits/rejected": -4.317187309265137,
214
+ "logps/chosen": -730.0,
215
+ "logps/rejected": -975.0,
216
+ "loss": 0.0,
217
+ "rewards/accuracies": 1.0,
218
+ "rewards/chosen": 7.485937595367432,
219
+ "rewards/margins": 60.162498474121094,
220
+ "rewards/rejected": -52.67499923706055,
221
+ "step": 260
222
+ },
223
+ {
224
+ "epoch": 1.0526315789473684,
225
+ "grad_norm": 5.510844973332184e-09,
226
+ "learning_rate": 3.6842105263157896e-06,
227
+ "logits/chosen": -3.06640625,
228
+ "logits/rejected": -4.3046875,
229
+ "logps/chosen": -736.4000244140625,
230
+ "logps/rejected": -961.5999755859375,
231
+ "loss": 0.0,
232
+ "rewards/accuracies": 1.0,
233
+ "rewards/chosen": 7.443749904632568,
234
+ "rewards/margins": 58.42499923706055,
235
+ "rewards/rejected": -51.025001525878906,
236
+ "step": 280
237
+ },
238
+ {
239
+ "epoch": 1.1278195488721805,
240
+ "grad_norm": 1.0805968862929627e-08,
241
+ "learning_rate": 3.590225563909775e-06,
242
+ "logits/chosen": -3.067187547683716,
243
+ "logits/rejected": -4.329687595367432,
244
+ "logps/chosen": -737.0,
245
+ "logps/rejected": -978.2000122070312,
246
+ "loss": 0.0,
247
+ "rewards/accuracies": 1.0,
248
+ "rewards/chosen": 7.373437404632568,
249
+ "rewards/margins": 59.849998474121094,
250
+ "rewards/rejected": -52.474998474121094,
251
+ "step": 300
252
+ },
253
+ {
254
+ "epoch": 1.2030075187969924,
255
+ "grad_norm": 1.8280615029499892e-13,
256
+ "learning_rate": 3.4962406015037596e-06,
257
+ "logits/chosen": -3.063281297683716,
258
+ "logits/rejected": -4.317187309265137,
259
+ "logps/chosen": -739.2000122070312,
260
+ "logps/rejected": -977.2000122070312,
261
+ "loss": 0.0,
262
+ "rewards/accuracies": 1.0,
263
+ "rewards/chosen": 7.349999904632568,
264
+ "rewards/margins": 59.67499923706055,
265
+ "rewards/rejected": -52.337501525878906,
266
+ "step": 320
267
+ },
268
+ {
269
+ "epoch": 1.2781954887218046,
270
+ "grad_norm": 8.685091807936255e-12,
271
+ "learning_rate": 3.4022556390977448e-06,
272
+ "logits/chosen": -3.057812452316284,
273
+ "logits/rejected": -4.293749809265137,
274
+ "logps/chosen": -740.4000244140625,
275
+ "logps/rejected": -961.2000122070312,
276
+ "loss": 0.0,
277
+ "rewards/accuracies": 1.0,
278
+ "rewards/chosen": 7.3203125,
279
+ "rewards/margins": 58.587501525878906,
280
+ "rewards/rejected": -51.25,
281
+ "step": 340
282
+ },
283
+ {
284
+ "epoch": 1.3533834586466165,
285
+ "grad_norm": 1.6244164681709312e-07,
286
+ "learning_rate": 3.3082706766917295e-06,
287
+ "logits/chosen": -3.059375047683716,
288
+ "logits/rejected": -4.295312404632568,
289
+ "logps/chosen": -738.2000122070312,
290
+ "logps/rejected": -958.0,
291
+ "loss": 0.0,
292
+ "rewards/accuracies": 1.0,
293
+ "rewards/chosen": 7.278124809265137,
294
+ "rewards/margins": 58.337501525878906,
295
+ "rewards/rejected": -51.04999923706055,
296
+ "step": 360
297
+ },
298
+ {
299
+ "epoch": 1.4285714285714286,
300
+ "grad_norm": 3.8272192733826815e-13,
301
+ "learning_rate": 3.2142857142857147e-06,
302
+ "logits/chosen": -3.0648436546325684,
303
+ "logits/rejected": -4.318749904632568,
304
+ "logps/chosen": -731.0,
305
+ "logps/rejected": -984.4000244140625,
306
+ "loss": 0.0,
307
+ "rewards/accuracies": 1.0,
308
+ "rewards/chosen": 7.357812404632568,
309
+ "rewards/margins": 60.38750076293945,
310
+ "rewards/rejected": -53.04999923706055,
311
+ "step": 380
312
+ },
313
+ {
314
+ "epoch": 1.5037593984962405,
315
+ "grad_norm": 6.450130800887369e-09,
316
+ "learning_rate": 3.1203007518796995e-06,
317
+ "logits/chosen": -3.0570311546325684,
318
+ "logits/rejected": -4.317187309265137,
319
+ "logps/chosen": -735.5999755859375,
320
+ "logps/rejected": -965.5999755859375,
321
+ "loss": 0.0,
322
+ "rewards/accuracies": 1.0,
323
+ "rewards/chosen": 7.471875190734863,
324
+ "rewards/margins": 59.13750076293945,
325
+ "rewards/rejected": -51.650001525878906,
326
+ "step": 400
327
+ },
328
+ {
329
+ "epoch": 1.5037593984962405,
330
+ "eval_logits/chosen": -3.0611701011657715,
331
+ "eval_logits/rejected": -4.303191661834717,
332
+ "eval_logps/chosen": -741.872314453125,
333
+ "eval_logps/rejected": -972.85107421875,
334
+ "eval_loss": 1.5668466524232372e-09,
335
+ "eval_rewards/accuracies": 1.0,
336
+ "eval_rewards/chosen": 7.266622543334961,
337
+ "eval_rewards/margins": 58.98404312133789,
338
+ "eval_rewards/rejected": -51.70744705200195,
339
+ "eval_runtime": 8.4851,
340
+ "eval_samples_per_second": 176.78,
341
+ "eval_score": -0.6956531405448914,
342
+ "eval_steps_per_second": 5.539,
343
+ "step": 400
344
+ },
345
+ {
346
+ "epoch": 1.5789473684210527,
347
+ "grad_norm": 1.5739247094468196e-10,
348
+ "learning_rate": 3.0263157894736843e-06,
349
+ "logits/chosen": -3.063281297683716,
350
+ "logits/rejected": -4.301562309265137,
351
+ "logps/chosen": -732.5999755859375,
352
+ "logps/rejected": -961.0,
353
+ "loss": 0.0,
354
+ "rewards/accuracies": 1.0,
355
+ "rewards/chosen": 7.067187309265137,
356
+ "rewards/margins": 58.025001525878906,
357
+ "rewards/rejected": -50.95000076293945,
358
+ "step": 420
359
+ },
360
+ {
361
+ "epoch": 1.6541353383458648,
362
+ "grad_norm": 5.037244548596992e-09,
363
+ "learning_rate": 2.9323308270676694e-06,
364
+ "logits/chosen": -3.0679688453674316,
365
+ "logits/rejected": -4.328125,
366
+ "logps/chosen": -735.5999755859375,
367
+ "logps/rejected": -983.5999755859375,
368
+ "loss": 0.0,
369
+ "rewards/accuracies": 1.0,
370
+ "rewards/chosen": 7.542187690734863,
371
+ "rewards/margins": 60.11249923706055,
372
+ "rewards/rejected": -52.54999923706055,
373
+ "step": 440
374
+ },
375
+ {
376
+ "epoch": 1.7293233082706767,
377
+ "grad_norm": 1.907719763871417e-13,
378
+ "learning_rate": 2.8383458646616546e-06,
379
+ "logits/chosen": -3.065624952316284,
380
+ "logits/rejected": -4.318749904632568,
381
+ "logps/chosen": -732.0,
382
+ "logps/rejected": -971.4000244140625,
383
+ "loss": 0.0,
384
+ "rewards/accuracies": 1.0,
385
+ "rewards/chosen": 7.348437309265137,
386
+ "rewards/margins": 59.599998474121094,
387
+ "rewards/rejected": -52.275001525878906,
388
+ "step": 460
389
+ },
390
+ {
391
+ "epoch": 1.8045112781954886,
392
+ "grad_norm": 2.413237608760496e-12,
393
+ "learning_rate": 2.7443609022556394e-06,
394
+ "logits/chosen": -3.06640625,
395
+ "logits/rejected": -4.303124904632568,
396
+ "logps/chosen": -734.0,
397
+ "logps/rejected": -962.2000122070312,
398
+ "loss": 0.0,
399
+ "rewards/accuracies": 1.0,
400
+ "rewards/chosen": 7.337500095367432,
401
+ "rewards/margins": 58.900001525878906,
402
+ "rewards/rejected": -51.54999923706055,
403
+ "step": 480
404
+ },
405
+ {
406
+ "epoch": 1.8796992481203008,
407
+ "grad_norm": 3.8499016698807266e-05,
408
+ "learning_rate": 2.650375939849624e-06,
409
+ "logits/chosen": -3.063281297683716,
410
+ "logits/rejected": -4.34375,
411
+ "logps/chosen": -741.0,
412
+ "logps/rejected": -975.4000244140625,
413
+ "loss": 0.0,
414
+ "rewards/accuracies": 1.0,
415
+ "rewards/chosen": 7.368750095367432,
416
+ "rewards/margins": 60.42499923706055,
417
+ "rewards/rejected": -53.0625,
418
+ "step": 500
419
+ },
420
+ {
421
+ "epoch": 1.954887218045113,
422
+ "grad_norm": 1.6477178899318827e-11,
423
+ "learning_rate": 2.556390977443609e-06,
424
+ "logits/chosen": -3.051562547683716,
425
+ "logits/rejected": -4.314062595367432,
426
+ "logps/chosen": -734.2000122070312,
427
+ "logps/rejected": -970.4000244140625,
428
+ "loss": 0.0,
429
+ "rewards/accuracies": 1.0,
430
+ "rewards/chosen": 7.464062690734863,
431
+ "rewards/margins": 59.70000076293945,
432
+ "rewards/rejected": -52.224998474121094,
433
+ "step": 520
434
+ },
435
+ {
436
+ "epoch": 2.030075187969925,
437
+ "grad_norm": 2.0829162250893226e-08,
438
+ "learning_rate": 2.462406015037594e-06,
439
+ "logits/chosen": -3.022656202316284,
440
+ "logits/rejected": -4.27734375,
441
+ "logps/chosen": -713.4000244140625,
442
+ "logps/rejected": -979.4000244140625,
443
+ "loss": 0.0045,
444
+ "rewards/accuracies": 0.995312511920929,
445
+ "rewards/chosen": 8.104687690734863,
446
+ "rewards/margins": 60.17499923706055,
447
+ "rewards/rejected": -52.0625,
448
+ "step": 540
449
+ },
450
+ {
451
+ "epoch": 2.1052631578947367,
452
+ "grad_norm": 1.0373247696775237e-09,
453
+ "learning_rate": 2.368421052631579e-06,
454
+ "logits/chosen": -2.9625000953674316,
455
+ "logits/rejected": -4.248437404632568,
456
+ "logps/chosen": -729.2000122070312,
457
+ "logps/rejected": -967.4000244140625,
458
+ "loss": 0.0,
459
+ "rewards/accuracies": 1.0,
460
+ "rewards/chosen": 8.295312881469727,
461
+ "rewards/margins": 59.724998474121094,
462
+ "rewards/rejected": -51.42499923706055,
463
+ "step": 560
464
+ },
465
+ {
466
+ "epoch": 2.180451127819549,
467
+ "grad_norm": 1.0771024319146517e-10,
468
+ "learning_rate": 2.274436090225564e-06,
469
+ "logits/chosen": -2.964062452316284,
470
+ "logits/rejected": -4.268750190734863,
471
+ "logps/chosen": -727.2000122070312,
472
+ "logps/rejected": -964.0,
473
+ "loss": 0.0,
474
+ "rewards/accuracies": 1.0,
475
+ "rewards/chosen": 7.871874809265137,
476
+ "rewards/margins": 59.3125,
477
+ "rewards/rejected": -51.42499923706055,
478
+ "step": 580
479
+ },
480
+ {
481
+ "epoch": 2.255639097744361,
482
+ "grad_norm": 3.252682975051824e-07,
483
+ "learning_rate": 2.180451127819549e-06,
484
+ "logits/chosen": -2.9429688453674316,
485
+ "logits/rejected": -4.2734375,
486
+ "logps/chosen": -725.0,
487
+ "logps/rejected": -963.5999755859375,
488
+ "loss": 0.0,
489
+ "rewards/accuracies": 1.0,
490
+ "rewards/chosen": 7.995312690734863,
491
+ "rewards/margins": 59.537498474121094,
492
+ "rewards/rejected": -51.537498474121094,
493
+ "step": 600
494
+ },
495
+ {
496
+ "epoch": 2.255639097744361,
497
+ "eval_logits/chosen": -2.953125,
498
+ "eval_logits/rejected": -4.254654407501221,
499
+ "eval_logps/chosen": -734.9786987304688,
500
+ "eval_logps/rejected": -968.7659301757812,
501
+ "eval_loss": 3.946915239083637e-09,
502
+ "eval_rewards/accuracies": 1.0,
503
+ "eval_rewards/chosen": 7.918882846832275,
504
+ "eval_rewards/margins": 59.25,
505
+ "eval_rewards/rejected": -51.32978820800781,
506
+ "eval_runtime": 8.4849,
507
+ "eval_samples_per_second": 176.784,
508
+ "eval_score": -0.8367462158203125,
509
+ "eval_steps_per_second": 5.539,
510
+ "step": 600
511
+ },
512
+ {
513
+ "epoch": 2.3308270676691727,
514
+ "grad_norm": 1.0373911797620403e-10,
515
+ "learning_rate": 2.086466165413534e-06,
516
+ "logits/chosen": -2.9546875953674316,
517
+ "logits/rejected": -4.296875,
518
+ "logps/chosen": -730.0,
519
+ "logps/rejected": -982.2000122070312,
520
+ "loss": 0.0,
521
+ "rewards/accuracies": 1.0,
522
+ "rewards/chosen": 7.956250190734863,
523
+ "rewards/margins": 60.900001525878906,
524
+ "rewards/rejected": -52.92499923706055,
525
+ "step": 620
526
+ },
527
+ {
528
+ "epoch": 2.406015037593985,
529
+ "grad_norm": 8.524041237745346e-09,
530
+ "learning_rate": 1.9924812030075188e-06,
531
+ "logits/chosen": -2.9507813453674316,
532
+ "logits/rejected": -4.275000095367432,
533
+ "logps/chosen": -725.5999755859375,
534
+ "logps/rejected": -961.5999755859375,
535
+ "loss": 0.0,
536
+ "rewards/accuracies": 1.0,
537
+ "rewards/chosen": 8.017187118530273,
538
+ "rewards/margins": 59.662498474121094,
539
+ "rewards/rejected": -51.63750076293945,
540
+ "step": 640
541
+ },
542
+ {
543
+ "epoch": 2.481203007518797,
544
+ "grad_norm": 1.7859258054396646e-12,
545
+ "learning_rate": 1.898496240601504e-06,
546
+ "logits/chosen": -2.953906297683716,
547
+ "logits/rejected": -4.225781440734863,
548
+ "logps/chosen": -725.0,
549
+ "logps/rejected": -964.7999877929688,
550
+ "loss": 0.0037,
551
+ "rewards/accuracies": 0.996874988079071,
552
+ "rewards/chosen": 7.964062690734863,
553
+ "rewards/margins": 58.587501525878906,
554
+ "rewards/rejected": -50.599998474121094,
555
+ "step": 660
556
+ },
557
+ {
558
+ "epoch": 2.556390977443609,
559
+ "grad_norm": 1.0660900262877694e-07,
560
+ "learning_rate": 1.8045112781954887e-06,
561
+ "logits/chosen": -2.977343797683716,
562
+ "logits/rejected": -4.276562690734863,
563
+ "logps/chosen": -729.4000244140625,
564
+ "logps/rejected": -979.5999755859375,
565
+ "loss": 0.0,
566
+ "rewards/accuracies": 1.0,
567
+ "rewards/chosen": 8.3203125,
568
+ "rewards/margins": 60.9375,
569
+ "rewards/rejected": -52.61249923706055,
570
+ "step": 680
571
+ },
572
+ {
573
+ "epoch": 2.6315789473684212,
574
+ "grad_norm": 1.4321429190376608e-11,
575
+ "learning_rate": 1.710526315789474e-06,
576
+ "logits/chosen": -2.97265625,
577
+ "logits/rejected": -4.278124809265137,
578
+ "logps/chosen": -723.4000244140625,
579
+ "logps/rejected": -970.4000244140625,
580
+ "loss": 0.0,
581
+ "rewards/accuracies": 1.0,
582
+ "rewards/chosen": 8.307812690734863,
583
+ "rewards/margins": 60.48749923706055,
584
+ "rewards/rejected": -52.162498474121094,
585
+ "step": 700
586
+ },
587
+ {
588
+ "epoch": 2.706766917293233,
589
+ "grad_norm": 1.3597127845174747e-07,
590
+ "learning_rate": 1.6165413533834587e-06,
591
+ "logits/chosen": -2.9710936546325684,
592
+ "logits/rejected": -4.296875,
593
+ "logps/chosen": -730.7999877929688,
594
+ "logps/rejected": -986.5999755859375,
595
+ "loss": 0.0,
596
+ "rewards/accuracies": 1.0,
597
+ "rewards/chosen": 8.112500190734863,
598
+ "rewards/margins": 61.724998474121094,
599
+ "rewards/rejected": -53.599998474121094,
600
+ "step": 720
601
+ },
602
+ {
603
+ "epoch": 2.781954887218045,
604
+ "grad_norm": 2.181569008354852e-13,
605
+ "learning_rate": 1.5225563909774439e-06,
606
+ "logits/chosen": -2.9749999046325684,
607
+ "logits/rejected": -4.271874904632568,
608
+ "logps/chosen": -721.0,
609
+ "logps/rejected": -971.5999755859375,
610
+ "loss": 0.0,
611
+ "rewards/accuracies": 1.0,
612
+ "rewards/chosen": 8.370312690734863,
613
+ "rewards/margins": 60.67499923706055,
614
+ "rewards/rejected": -52.32500076293945,
615
+ "step": 740
616
+ },
617
+ {
618
+ "epoch": 2.857142857142857,
619
+ "grad_norm": 1.4223787675268966e-11,
620
+ "learning_rate": 1.4285714285714286e-06,
621
+ "logits/chosen": -2.979687452316284,
622
+ "logits/rejected": -4.292187690734863,
623
+ "logps/chosen": -735.5999755859375,
624
+ "logps/rejected": -979.2000122070312,
625
+ "loss": 0.0,
626
+ "rewards/accuracies": 1.0,
627
+ "rewards/chosen": 8.193750381469727,
628
+ "rewards/margins": 61.3125,
629
+ "rewards/rejected": -53.125,
630
+ "step": 760
631
+ },
632
+ {
633
+ "epoch": 2.932330827067669,
634
+ "grad_norm": 6.992803813674245e-08,
635
+ "learning_rate": 1.3345864661654136e-06,
636
+ "logits/chosen": -2.973437547683716,
637
+ "logits/rejected": -4.25,
638
+ "logps/chosen": -724.0,
639
+ "logps/rejected": -967.2000122070312,
640
+ "loss": 0.0,
641
+ "rewards/accuracies": 1.0,
642
+ "rewards/chosen": 8.217187881469727,
643
+ "rewards/margins": 59.900001525878906,
644
+ "rewards/rejected": -51.6875,
645
+ "step": 780
646
+ },
647
+ {
648
+ "epoch": 3.007518796992481,
649
+ "grad_norm": 1.660423123855119e-08,
650
+ "learning_rate": 1.2406015037593986e-06,
651
+ "logits/chosen": -2.975781202316284,
652
+ "logits/rejected": -4.293749809265137,
653
+ "logps/chosen": -731.7999877929688,
654
+ "logps/rejected": -990.2000122070312,
655
+ "loss": 0.0,
656
+ "rewards/accuracies": 1.0,
657
+ "rewards/chosen": 8.190625190734863,
658
+ "rewards/margins": 61.974998474121094,
659
+ "rewards/rejected": -53.76250076293945,
660
+ "step": 800
661
+ },
662
+ {
663
+ "epoch": 3.007518796992481,
664
+ "eval_logits/chosen": -2.9724068641662598,
665
+ "eval_logits/rejected": -4.260638236999512,
666
+ "eval_logps/chosen": -733.4468383789062,
667
+ "eval_logps/rejected": -979.574462890625,
668
+ "eval_loss": 1.755893541677267e-09,
669
+ "eval_rewards/accuracies": 1.0,
670
+ "eval_rewards/chosen": 8.110372543334961,
671
+ "eval_rewards/margins": 60.537235260009766,
672
+ "eval_rewards/rejected": -52.441490173339844,
673
+ "eval_runtime": 8.4913,
674
+ "eval_samples_per_second": 176.652,
675
+ "eval_score": -0.7882758378982544,
676
+ "eval_steps_per_second": 5.535,
677
+ "step": 800
678
+ },
679
+ {
680
+ "epoch": 3.082706766917293,
681
+ "grad_norm": 8.005659023834536e-12,
682
+ "learning_rate": 1.1466165413533836e-06,
683
+ "logits/chosen": -2.9710936546325684,
684
+ "logits/rejected": -4.2890625,
685
+ "logps/chosen": -731.2000122070312,
686
+ "logps/rejected": -993.2000122070312,
687
+ "loss": 0.0,
688
+ "rewards/accuracies": 1.0,
689
+ "rewards/chosen": 8.2578125,
690
+ "rewards/margins": 62.13750076293945,
691
+ "rewards/rejected": -53.900001525878906,
692
+ "step": 820
693
+ },
694
+ {
695
+ "epoch": 3.1578947368421053,
696
+ "grad_norm": 5.843963868032614e-09,
697
+ "learning_rate": 1.0526315789473685e-06,
698
+ "logits/chosen": -2.975781202316284,
699
+ "logits/rejected": -4.279687404632568,
700
+ "logps/chosen": -723.7999877929688,
701
+ "logps/rejected": -973.4000244140625,
702
+ "loss": 0.0,
703
+ "rewards/accuracies": 1.0,
704
+ "rewards/chosen": 8.0703125,
705
+ "rewards/margins": 60.662498474121094,
706
+ "rewards/rejected": -52.57500076293945,
707
+ "step": 840
708
+ },
709
+ {
710
+ "epoch": 3.2330827067669174,
711
+ "grad_norm": 1.4081920596327731e-08,
712
+ "learning_rate": 9.586466165413535e-07,
713
+ "logits/chosen": -2.969531297683716,
714
+ "logits/rejected": -4.287499904632568,
715
+ "logps/chosen": -732.4000244140625,
716
+ "logps/rejected": -984.7999877929688,
717
+ "loss": 0.0,
718
+ "rewards/accuracies": 1.0,
719
+ "rewards/chosen": 8.153124809265137,
720
+ "rewards/margins": 61.599998474121094,
721
+ "rewards/rejected": -53.45000076293945,
722
+ "step": 860
723
+ },
724
+ {
725
+ "epoch": 3.308270676691729,
726
+ "grad_norm": 6.352507576934744e-09,
727
+ "learning_rate": 8.646616541353384e-07,
728
+ "logits/chosen": -2.9742188453674316,
729
+ "logits/rejected": -4.279687404632568,
730
+ "logps/chosen": -727.7999877929688,
731
+ "logps/rejected": -974.5999755859375,
732
+ "loss": 0.0,
733
+ "rewards/accuracies": 1.0,
734
+ "rewards/chosen": 8.331250190734863,
735
+ "rewards/margins": 60.92499923706055,
736
+ "rewards/rejected": -52.650001525878906,
737
+ "step": 880
738
+ },
739
+ {
740
+ "epoch": 3.3834586466165413,
741
+ "grad_norm": 1.3822216777037244e-07,
742
+ "learning_rate": 7.706766917293233e-07,
743
+ "logits/chosen": -2.9828124046325684,
744
+ "logits/rejected": -4.2734375,
745
+ "logps/chosen": -725.4000244140625,
746
+ "logps/rejected": -971.2000122070312,
747
+ "loss": 0.0,
748
+ "rewards/accuracies": 1.0,
749
+ "rewards/chosen": 8.231249809265137,
750
+ "rewards/margins": 60.712501525878906,
751
+ "rewards/rejected": -52.5,
752
+ "step": 900
753
+ },
754
+ {
755
+ "epoch": 3.4586466165413534,
756
+ "grad_norm": 9.571201627686208e-09,
757
+ "learning_rate": 6.766917293233083e-07,
758
+ "logits/chosen": -2.9742188453674316,
759
+ "logits/rejected": -4.264062404632568,
760
+ "logps/chosen": -731.2000122070312,
761
+ "logps/rejected": -973.0,
762
+ "loss": 0.0,
763
+ "rewards/accuracies": 1.0,
764
+ "rewards/chosen": 8.154687881469727,
765
+ "rewards/margins": 60.537498474121094,
766
+ "rewards/rejected": -52.38750076293945,
767
+ "step": 920
768
+ },
769
+ {
770
+ "epoch": 3.5338345864661656,
771
+ "grad_norm": 1.749306374149707e-12,
772
+ "learning_rate": 5.827067669172933e-07,
773
+ "logits/chosen": -2.975781202316284,
774
+ "logits/rejected": -4.282812595367432,
775
+ "logps/chosen": -724.4000244140625,
776
+ "logps/rejected": -971.7999877929688,
777
+ "loss": 0.0,
778
+ "rewards/accuracies": 1.0,
779
+ "rewards/chosen": 8.28125,
780
+ "rewards/margins": 60.92499923706055,
781
+ "rewards/rejected": -52.63750076293945,
782
+ "step": 940
783
+ },
784
+ {
785
+ "epoch": 3.6090225563909772,
786
+ "grad_norm": 1.2949258395470178e-10,
787
+ "learning_rate": 4.887218045112782e-07,
788
+ "logits/chosen": -2.973437547683716,
789
+ "logits/rejected": -4.268750190734863,
790
+ "logps/chosen": -720.7999877929688,
791
+ "logps/rejected": -976.2000122070312,
792
+ "loss": 0.0,
793
+ "rewards/accuracies": 1.0,
794
+ "rewards/chosen": 8.112500190734863,
795
+ "rewards/margins": 60.787498474121094,
796
+ "rewards/rejected": -52.67499923706055,
797
+ "step": 960
798
+ },
799
+ {
800
+ "epoch": 3.6842105263157894,
801
+ "grad_norm": 7.884964535382202e-09,
802
+ "learning_rate": 3.9473684210526315e-07,
803
+ "logits/chosen": -2.9671874046325684,
804
+ "logits/rejected": -4.268750190734863,
805
+ "logps/chosen": -730.4000244140625,
806
+ "logps/rejected": -975.4000244140625,
807
+ "loss": 0.0,
808
+ "rewards/accuracies": 1.0,
809
+ "rewards/chosen": 8.253125190734863,
810
+ "rewards/margins": 60.787498474121094,
811
+ "rewards/rejected": -52.54999923706055,
812
+ "step": 980
813
+ },
814
+ {
815
+ "epoch": 3.7593984962406015,
816
+ "grad_norm": 1.6358064493089766e-10,
817
+ "learning_rate": 3.007518796992481e-07,
818
+ "logits/chosen": -2.973437547683716,
819
+ "logits/rejected": -4.2578125,
820
+ "logps/chosen": -730.0,
821
+ "logps/rejected": -983.2000122070312,
822
+ "loss": 0.0,
823
+ "rewards/accuracies": 1.0,
824
+ "rewards/chosen": 8.1875,
825
+ "rewards/margins": 60.962501525878906,
826
+ "rewards/rejected": -52.787498474121094,
827
+ "step": 1000
828
+ },
829
+ {
830
+ "epoch": 3.7593984962406015,
831
+ "eval_logits/chosen": -2.9727394580841064,
832
+ "eval_logits/rejected": -4.261303424835205,
833
+ "eval_logps/chosen": -733.3616943359375,
834
+ "eval_logps/rejected": -980.0,
835
+ "eval_loss": 1.7744486990878272e-09,
836
+ "eval_rewards/accuracies": 1.0,
837
+ "eval_rewards/chosen": 8.113032341003418,
838
+ "eval_rewards/margins": 60.5638313293457,
839
+ "eval_rewards/rejected": -52.462764739990234,
840
+ "eval_runtime": 8.5637,
841
+ "eval_samples_per_second": 175.158,
842
+ "eval_score": -0.7953461408615112,
843
+ "eval_steps_per_second": 5.488,
844
+ "step": 1000
845
+ },
846
+ {
847
+ "epoch": 3.8345864661654137,
848
+ "grad_norm": 7.702424009927947e-10,
849
+ "learning_rate": 2.067669172932331e-07,
850
+ "logits/chosen": -2.971874952316284,
851
+ "logits/rejected": -4.2578125,
852
+ "logps/chosen": -729.5999755859375,
853
+ "logps/rejected": -980.0,
854
+ "loss": 0.0,
855
+ "rewards/accuracies": 1.0,
856
+ "rewards/chosen": 8.28125,
857
+ "rewards/margins": 60.537498474121094,
858
+ "rewards/rejected": -52.20000076293945,
859
+ "step": 1020
860
+ },
861
+ {
862
+ "epoch": 3.909774436090226,
863
+ "grad_norm": 5.643256636003421e-08,
864
+ "learning_rate": 1.1278195488721805e-07,
865
+ "logits/chosen": -2.9820313453674316,
866
+ "logits/rejected": -4.292187690734863,
867
+ "logps/chosen": -729.7999877929688,
868
+ "logps/rejected": -988.4000244140625,
869
+ "loss": 0.0,
870
+ "rewards/accuracies": 1.0,
871
+ "rewards/chosen": 8.293749809265137,
872
+ "rewards/margins": 61.79999923706055,
873
+ "rewards/rejected": -53.525001525878906,
874
+ "step": 1040
875
+ },
876
+ {
877
+ "epoch": 3.9849624060150375,
878
+ "grad_norm": 6.672698844431039e-09,
879
+ "learning_rate": 1.8796992481203008e-08,
880
+ "logits/chosen": -2.9671874046325684,
881
+ "logits/rejected": -4.241406440734863,
882
+ "logps/chosen": -710.4000244140625,
883
+ "logps/rejected": -972.4000244140625,
884
+ "loss": 0.0049,
885
+ "rewards/accuracies": 0.9937499761581421,
886
+ "rewards/chosen": 8.0546875,
887
+ "rewards/margins": 59.900001525878906,
888
+ "rewards/rejected": -51.837501525878906,
889
+ "step": 1060
890
+ }
891
+ ],
892
+ "logging_steps": 20,
893
+ "max_steps": 1064,
894
+ "num_input_tokens_seen": 0,
895
+ "num_train_epochs": 4,
896
+ "save_steps": 300,
897
+ "stateful_callbacks": {
898
+ "TrainerControl": {
899
+ "args": {
900
+ "should_epoch_stop": false,
901
+ "should_evaluate": false,
902
+ "should_log": false,
903
+ "should_save": true,
904
+ "should_training_stop": true
905
+ },
906
+ "attributes": {}
907
+ }
908
+ },
909
+ "total_flos": 0.0,
910
+ "train_batch_size": 8,
911
+ "trial_name": null,
912
+ "trial_params": null
913
+ }
dataset-0/checkpoint-1064/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53083fe0b244af4e0f853144e008d73e36663ab1424b0e34148d1834df62622b
3
+ size 7992
dataset-0/checkpoint-1064/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
dataset-0/checkpoint-1064/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
dataset-0/checkpoint-300/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
dataset-0/checkpoint-300/config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2-0.5B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 896,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 4864,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 24,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 14,
17
+ "num_hidden_layers": 24,
18
+ "num_key_value_heads": 2,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": 32768,
23
+ "tie_word_embeddings": true,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.49.0",
26
+ "use_cache": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 151936
29
+ }
dataset-0/checkpoint-300/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.1,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.49.0"
14
+ }
dataset-0/checkpoint-300/global_step300/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:215f5aac3c4e731f92aa12b04bff8afafed83f8ab6c33772f26f719cd5ddf46e
3
+ size 1482103280
dataset-0/checkpoint-300/global_step300/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdfd3549f8e5284cd53888cf8277ce0168895e97add700aa89e9be8c696252bf
3
+ size 1482103280
dataset-0/checkpoint-300/global_step300/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c8cd97699549e19af2a3caee10ceb7185de3aca2b0e28110ee3df2bfbbd2260
3
+ size 1482103280
dataset-0/checkpoint-300/global_step300/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70b55a1986d6646a9b6893fa56167c9d916e6366ab601d3574b638cb8d4f6ba6
3
+ size 1482103280
dataset-0/checkpoint-300/global_step300/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2905f3d8ef914e8f3e13498720c98815c28cc1405201df8666e3553413880e13
3
+ size 142728
dataset-0/checkpoint-300/global_step300/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5c06da8d026e399810f9277cfcefcac4c4683e884491ed22f1abf2a813a587a
3
+ size 142664
dataset-0/checkpoint-300/global_step300/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac32b8a1f16fe6c858519ab8dad2047cf25a1c7f7856186607712140845a5082
3
+ size 142664
dataset-0/checkpoint-300/global_step300/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5f8fb4df2e19b18ec38d918ad176a802b4d6ffa28b4dc07fd12f7ac442fc6ec
3
+ size 142664
dataset-0/checkpoint-300/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step300
dataset-0/checkpoint-300/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
dataset-0/checkpoint-300/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:795daca6b0e7f3796545eb712b58861323b4b8a0096962fc1682bd6d4d616899
3
+ size 988097824
dataset-0/checkpoint-300/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e60baca04b746326a6b7ae6b3aa189980b7cc51bdd14b3ed53746093b56189df
3
+ size 15024
dataset-0/checkpoint-300/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e234cb41cc8c7b367d4683147cea9d4111b7c0fe205f6a4a39a690414894dec3
3
+ size 15024
dataset-0/checkpoint-300/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91b117f6cd91485bd56ca6b914c1e5a29b7b4cb2e7f29545be13eb60b37277c1
3
+ size 15024
dataset-0/checkpoint-300/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3990446e832529a8aa9f5a964d189b3a2eea28ebfcfefcd038028ca040f4236
3
+ size 15024
dataset-0/checkpoint-300/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:148067466c5e2463648afe08dbbbfd0cb93920366b97202b7c6c137055747dbb
3
+ size 1064
dataset-0/checkpoint-300/special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|im_end|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
dataset-0/checkpoint-300/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcfe42da0a4497e8b2b172c1f9f4ec423a46dc12907f4349c55025f670422ba9
3
+ size 11418266
dataset-0/checkpoint-300/tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|im_end|>",
37
+ "errors": "replace",
38
+ "extra_special_tokens": {},
39
+ "model_max_length": 32768,
40
+ "pad_token": "<|endoftext|>",
41
+ "split_special_tokens": false,
42
+ "tokenizer_class": "Qwen2Tokenizer",
43
+ "unk_token": null
44
+ }