Update README.md
Browse files
README.md
CHANGED
@@ -13,70 +13,79 @@ LLM4Decompile aims to decompile x86 assembly instructions into C. It is finetune
|
|
13 |
|
14 |
|
15 |
### 2. Evaluation Results
|
16 |
-
| Model | Re-compilability | | | | | Re-executability | | | | |
|
17 |
-
|--------------------|:----------------:|:---------:|:---------:|:---------:|:---------:|:----------------:|-----------|-----------|-----------|:---------:|
|
18 |
-
| Optimization-level | O0 | O1 | O2 | O3 | Avg. | O0 | O1 | O2 | O3 | Avg. |
|
19 |
-
| GPT4 | 0.92 | 0.94 | 0.88 | 0.84 | 0.895 | 0.1341 | 0.1890 | 0.1524 | 0.0854 | 0.1402 |
|
20 |
-
| DeepSeek-Coder-33B | 0.0659 | 0.0866 | 0.1500 | 0.1463 | 0.1122 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
|
21 |
-
| LLM4Decompile-1b | 0.8780 | 0.8732 | 0.8683 | 0.8378 | 0.8643 | 0.1573 | 0.0768 | 0.1000 | 0.0878 | 0.1055 |
|
22 |
-
| LLM4Decompile-6b | 0.8817 | 0.8951 | 0.8671 | 0.8476 | 0.8729 | 0.3000 | 0.1732 | 0.1988 | 0.1841 | 0.2140 |
|
23 |
-
| LLM4Decompile-33b | 0.8134 | 0.8195 | 0.8183 | 0.8305 | 0.8204 | 0.3049 | 0.1902 | 0.1817 | 0.1817 | 0.2146 |
|
24 |
-
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
### 3. How to Use
|
28 |
-
Here
|
29 |
-
|
|
|
|
|
30 |
```python
|
31 |
import subprocess
|
32 |
import os
|
33 |
-
import re
|
34 |
|
35 |
-
digit_pattern = r'\b0x[a-fA-F0-9]+\b'# binary codes in Hexadecimal
|
36 |
-
zeros_pattern = r'^0+\s'#0s
|
37 |
OPT = ["O0", "O1", "O2", "O3"]
|
38 |
-
|
39 |
-
after = "\n# What is the source code?\n"
|
40 |
-
fileName = 'path/to/file'
|
41 |
-
with open(fileName+'.c','r') as f:#original file
|
42 |
-
c_func = f.read()
|
43 |
for opt_state in OPT:
|
44 |
output_file = fileName +'_' + opt_state
|
45 |
input_file = fileName+'.c'
|
46 |
-
compile_command = f'gcc -
|
47 |
subprocess.run(compile_command, shell=True, check=True)
|
48 |
compile_command = f'objdump -d {output_file}.o > {output_file}.s'#disassemble the binary file into assembly instructions
|
49 |
subprocess.run(compile_command, shell=True, check=True)
|
50 |
|
51 |
input_asm = ''
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
input_asm_prompt = before+input_asm.strip()+after
|
61 |
with open(fileName +'_' + opt_state +'.asm','w',encoding='utf-8') as f:
|
62 |
f.write(input_asm_prompt)
|
63 |
```
|
64 |
|
65 |
-
|
66 |
```python
|
67 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
68 |
import torch
|
69 |
|
70 |
-
model_path = '
|
71 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
72 |
model = AutoModelForCausalLM.from_pretrained(model_path,torch_dtype=torch.bfloat16).cuda()
|
73 |
|
74 |
-
with open(fileName +'_' +
|
75 |
asm_func = f.read()
|
76 |
inputs = tokenizer(asm_func, return_tensors="pt").to(model.device)
|
77 |
-
|
78 |
-
|
79 |
c_func_decompile = tokenizer.decode(outputs[0][len(inputs[0]):-1])
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
```
|
81 |
|
82 |
### 4. License
|
|
|
13 |
|
14 |
|
15 |
### 2. Evaluation Results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
| Model | HumanEval-Decompile | | | | | ExeBench | | | | |
|
18 |
+
|:-----------------------:|:-------------------:|:------:|:------:|:------:|:------:|:--------:|:------:|:------:|:------:|:------:|
|
19 |
+
| opt-level | O0 | O1 | O2 | O3 | Avg. | O0 | O1 | O2 | O3 | Avg. |
|
20 |
+
| GPT4 | 0.1341 | 0.1890 | 0.1524 | 0.0854 | 0.1402 | TBD | TBD | TBD | TBD | TBD |
|
21 |
+
| Deepseek-Coder-33B | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|
22 |
+
| LLM4Decompile-6.7B-UO | 0.3720 | 0.1585 | 0.2134 | 0.2134 | 0.2393 | 0.0904 | 0.0988 | 0.0988 | 0.0950 | 0.0957 |
|
23 |
+
| LLM4Decompile-1.3B-V1.5 | 0.4817 | 0.2463 | 0.2329 | 0.2280 | 0.2972 | 0.2076 | 0.1774 | 0.1721 | 0.1728 | 0.1824 |
|
24 |
+
| LLM4Decompile-6.7B-V1.5 | 0.6927 | 0.4280 | 0.4134 | 0.3732 | 0.4768 | 0.2453 | 0.1999 | 0.1927 | 0.1938 | 0.2079 |
|
25 |
|
26 |
### 3. How to Use
|
27 |
+
Here is an example of how to use our model (Revised for V1.5).
|
28 |
+
Note: **Replace** func0 with the function name you want to decompile.
|
29 |
+
|
30 |
+
**Preprocessing:** Compile the C code into binary, and disassemble the binary into assembly instructions.
|
31 |
```python
|
32 |
import subprocess
|
33 |
import os
|
|
|
34 |
|
|
|
|
|
35 |
OPT = ["O0", "O1", "O2", "O3"]
|
36 |
+
fileName = 'samples/sample' #'path/to/file'
|
|
|
|
|
|
|
|
|
37 |
for opt_state in OPT:
|
38 |
output_file = fileName +'_' + opt_state
|
39 |
input_file = fileName+'.c'
|
40 |
+
compile_command = f'gcc -o {output_file}.o {input_file} -{opt_state} -lm'#compile the code with GCC on Linux
|
41 |
subprocess.run(compile_command, shell=True, check=True)
|
42 |
compile_command = f'objdump -d {output_file}.o > {output_file}.s'#disassemble the binary file into assembly instructions
|
43 |
subprocess.run(compile_command, shell=True, check=True)
|
44 |
|
45 |
input_asm = ''
|
46 |
+
with open(output_file+'.s') as f:#asm file
|
47 |
+
asm= f.read()
|
48 |
+
if '<'+'func0'+'>:' not in asm: #IMPORTANT replace func0 with the function name
|
49 |
+
raise ValueError("compile fails")
|
50 |
+
asm = '<'+'func0'+'>:' + asm.split('<'+'func0'+'>:')[-1].split('\n\n')[0] #IMPORTANT replace func0 with the function name
|
51 |
+
asm_clean = ""
|
52 |
+
asm_sp = asm.split("\n")
|
53 |
+
for tmp in asm_sp:
|
54 |
+
idx = min(
|
55 |
+
len(tmp.split("\t")) - 1, 2
|
56 |
+
)
|
57 |
+
tmp_asm = "\t".join(tmp.split("\t")[idx:]) # remove the binary code
|
58 |
+
tmp_asm = tmp_asm.split("#")[0].strip() # remove the comments
|
59 |
+
asm_clean += tmp_asm + "\n"
|
60 |
+
input_asm = asm_clean.strip()
|
61 |
+
before = f"# This is the assembly code:\n"#prompt
|
62 |
+
after = "\n# What is the source code?\n"#prompt
|
63 |
input_asm_prompt = before+input_asm.strip()+after
|
64 |
with open(fileName +'_' + opt_state +'.asm','w',encoding='utf-8') as f:
|
65 |
f.write(input_asm_prompt)
|
66 |
```
|
67 |
|
68 |
+
**Decompilation:** Use LLM4Decompile to translate the assembly instructions into C:
|
69 |
```python
|
70 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
71 |
import torch
|
72 |
|
73 |
+
model_path = 'LLM4Binary/llm4decompile-6.7b-v1.5' # V1.5 Model
|
74 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
75 |
model = AutoModelForCausalLM.from_pretrained(model_path,torch_dtype=torch.bfloat16).cuda()
|
76 |
|
77 |
+
with open(fileName +'_' + OPT[0] +'.asm','r') as f:#optimization level O0
|
78 |
asm_func = f.read()
|
79 |
inputs = tokenizer(asm_func, return_tensors="pt").to(model.device)
|
80 |
+
with torch.no_grad():
|
81 |
+
outputs = model.generate(**inputs, max_new_tokens=4000)
|
82 |
c_func_decompile = tokenizer.decode(outputs[0][len(inputs[0]):-1])
|
83 |
+
|
84 |
+
with open(fileName +'.c','r') as f:#original file
|
85 |
+
func = f.read()
|
86 |
+
|
87 |
+
print(f'original function:\n{func}')# Note we only decompile one function, where the original file may contain multiple functions
|
88 |
+
print(f'decompiled function:\n{c_func_decompile}')
|
89 |
```
|
90 |
|
91 |
### 4. License
|