LLM4Binary commited on
Commit
2ccac83
·
verified ·
1 Parent(s): 1ad03b6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +42 -33
README.md CHANGED
@@ -13,70 +13,79 @@ LLM4Decompile aims to decompile x86 assembly instructions into C. It is finetune
13
 
14
 
15
  ### 2. Evaluation Results
16
- | Model | Re-compilability | | | | | Re-executability | | | | |
17
- |--------------------|:----------------:|:---------:|:---------:|:---------:|:---------:|:----------------:|-----------|-----------|-----------|:---------:|
18
- | Optimization-level | O0 | O1 | O2 | O3 | Avg. | O0 | O1 | O2 | O3 | Avg. |
19
- | GPT4 | 0.92 | 0.94 | 0.88 | 0.84 | 0.895 | 0.1341 | 0.1890 | 0.1524 | 0.0854 | 0.1402 |
20
- | DeepSeek-Coder-33B | 0.0659 | 0.0866 | 0.1500 | 0.1463 | 0.1122 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
21
- | LLM4Decompile-1b | 0.8780 | 0.8732 | 0.8683 | 0.8378 | 0.8643 | 0.1573 | 0.0768 | 0.1000 | 0.0878 | 0.1055 |
22
- | LLM4Decompile-6b | 0.8817 | 0.8951 | 0.8671 | 0.8476 | 0.8729 | 0.3000 | 0.1732 | 0.1988 | 0.1841 | 0.2140 |
23
- | LLM4Decompile-33b | 0.8134 | 0.8195 | 0.8183 | 0.8305 | 0.8204 | 0.3049 | 0.1902 | 0.1817 | 0.1817 | 0.2146 |
24
-
25
 
 
 
 
 
 
 
 
 
26
 
27
  ### 3. How to Use
28
- Here give an example of how to use our model.
29
- First compile the C code into binary, disassemble the binary into assembly instructions:
 
 
30
  ```python
31
  import subprocess
32
  import os
33
- import re
34
 
35
- digit_pattern = r'\b0x[a-fA-F0-9]+\b'# binary codes in Hexadecimal
36
- zeros_pattern = r'^0+\s'#0s
37
  OPT = ["O0", "O1", "O2", "O3"]
38
- before = f"# This is the assembly code with {opt_state} optimization:\n"
39
- after = "\n# What is the source code?\n"
40
- fileName = 'path/to/file'
41
- with open(fileName+'.c','r') as f:#original file
42
- c_func = f.read()
43
  for opt_state in OPT:
44
  output_file = fileName +'_' + opt_state
45
  input_file = fileName+'.c'
46
- compile_command = f'gcc -c -o {output_file}.o {input_file} -{opt_state} -lm'#compile the code with GCC on Linux
47
  subprocess.run(compile_command, shell=True, check=True)
48
  compile_command = f'objdump -d {output_file}.o > {output_file}.s'#disassemble the binary file into assembly instructions
49
  subprocess.run(compile_command, shell=True, check=True)
50
 
51
  input_asm = ''
52
- asm = read_file(output_file+'.s')
53
- asm = asm.split('Disassembly of section .text:')[-1].strip()
54
- for tmp in asm.split('\n'):
55
- tmp_asm = tmp.split('\t')[-1]#remove the binary code
56
- tmp_asm = tmp_asm.split('#')[0].strip()#remove the comments
57
- input_asm+=tmp_asm+'\n'
58
- input_asm = re.sub(zeros_pattern, '', input_asm)
59
-
 
 
 
 
 
 
 
 
 
60
  input_asm_prompt = before+input_asm.strip()+after
61
  with open(fileName +'_' + opt_state +'.asm','w',encoding='utf-8') as f:
62
  f.write(input_asm_prompt)
63
  ```
64
 
65
- Then use LLM4Decompile to translate the assembly instructions into C:
66
  ```python
67
  from transformers import AutoTokenizer, AutoModelForCausalLM
68
  import torch
69
 
70
- model_path = 'arise-sustech/llm4decompile-1.3b'
71
  tokenizer = AutoTokenizer.from_pretrained(model_path)
72
  model = AutoModelForCausalLM.from_pretrained(model_path,torch_dtype=torch.bfloat16).cuda()
73
 
74
- with open(fileName +'_' + opt_state +'.asm','r') as f:#original file
75
  asm_func = f.read()
76
  inputs = tokenizer(asm_func, return_tensors="pt").to(model.device)
77
- with torch.no_grad():
78
- outputs = model.generate(**inputs, max_new_tokens=512)
79
  c_func_decompile = tokenizer.decode(outputs[0][len(inputs[0]):-1])
 
 
 
 
 
 
80
  ```
81
 
82
  ### 4. License
 
13
 
14
 
15
  ### 2. Evaluation Results
 
 
 
 
 
 
 
 
 
16
 
17
+ | Model | HumanEval-Decompile | | | | | ExeBench | | | | |
18
+ |:-----------------------:|:-------------------:|:------:|:------:|:------:|:------:|:--------:|:------:|:------:|:------:|:------:|
19
+ | opt-level | O0 | O1 | O2 | O3 | Avg. | O0 | O1 | O2 | O3 | Avg. |
20
+ | GPT4 | 0.1341 | 0.1890 | 0.1524 | 0.0854 | 0.1402 | TBD | TBD | TBD | TBD | TBD |
21
+ | Deepseek-Coder-33B | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
22
+ | LLM4Decompile-6.7B-UO | 0.3720 | 0.1585 | 0.2134 | 0.2134 | 0.2393 | 0.0904 | 0.0988 | 0.0988 | 0.0950 | 0.0957 |
23
+ | LLM4Decompile-1.3B-V1.5 | 0.4817 | 0.2463 | 0.2329 | 0.2280 | 0.2972 | 0.2076 | 0.1774 | 0.1721 | 0.1728 | 0.1824 |
24
+ | LLM4Decompile-6.7B-V1.5 | 0.6927 | 0.4280 | 0.4134 | 0.3732 | 0.4768 | 0.2453 | 0.1999 | 0.1927 | 0.1938 | 0.2079 |
25
 
26
  ### 3. How to Use
27
+ Here is an example of how to use our model (Revised for V1.5).
28
+ Note: **Replace** func0 with the function name you want to decompile.
29
+
30
+ **Preprocessing:** Compile the C code into binary, and disassemble the binary into assembly instructions.
31
  ```python
32
  import subprocess
33
  import os
 
34
 
 
 
35
  OPT = ["O0", "O1", "O2", "O3"]
36
+ fileName = 'samples/sample' #'path/to/file'
 
 
 
 
37
  for opt_state in OPT:
38
  output_file = fileName +'_' + opt_state
39
  input_file = fileName+'.c'
40
+ compile_command = f'gcc -o {output_file}.o {input_file} -{opt_state} -lm'#compile the code with GCC on Linux
41
  subprocess.run(compile_command, shell=True, check=True)
42
  compile_command = f'objdump -d {output_file}.o > {output_file}.s'#disassemble the binary file into assembly instructions
43
  subprocess.run(compile_command, shell=True, check=True)
44
 
45
  input_asm = ''
46
+ with open(output_file+'.s') as f:#asm file
47
+ asm= f.read()
48
+ if '<'+'func0'+'>:' not in asm: #IMPORTANT replace func0 with the function name
49
+ raise ValueError("compile fails")
50
+ asm = '<'+'func0'+'>:' + asm.split('<'+'func0'+'>:')[-1].split('\n\n')[0] #IMPORTANT replace func0 with the function name
51
+ asm_clean = ""
52
+ asm_sp = asm.split("\n")
53
+ for tmp in asm_sp:
54
+ idx = min(
55
+ len(tmp.split("\t")) - 1, 2
56
+ )
57
+ tmp_asm = "\t".join(tmp.split("\t")[idx:]) # remove the binary code
58
+ tmp_asm = tmp_asm.split("#")[0].strip() # remove the comments
59
+ asm_clean += tmp_asm + "\n"
60
+ input_asm = asm_clean.strip()
61
+ before = f"# This is the assembly code:\n"#prompt
62
+ after = "\n# What is the source code?\n"#prompt
63
  input_asm_prompt = before+input_asm.strip()+after
64
  with open(fileName +'_' + opt_state +'.asm','w',encoding='utf-8') as f:
65
  f.write(input_asm_prompt)
66
  ```
67
 
68
+ **Decompilation:** Use LLM4Decompile to translate the assembly instructions into C:
69
  ```python
70
  from transformers import AutoTokenizer, AutoModelForCausalLM
71
  import torch
72
 
73
+ model_path = 'LLM4Binary/llm4decompile-6.7b-v1.5' # V1.5 Model
74
  tokenizer = AutoTokenizer.from_pretrained(model_path)
75
  model = AutoModelForCausalLM.from_pretrained(model_path,torch_dtype=torch.bfloat16).cuda()
76
 
77
+ with open(fileName +'_' + OPT[0] +'.asm','r') as f:#optimization level O0
78
  asm_func = f.read()
79
  inputs = tokenizer(asm_func, return_tensors="pt").to(model.device)
80
+ with torch.no_grad():
81
+ outputs = model.generate(**inputs, max_new_tokens=4000)
82
  c_func_decompile = tokenizer.decode(outputs[0][len(inputs[0]):-1])
83
+
84
+ with open(fileName +'.c','r') as f:#original file
85
+ func = f.read()
86
+
87
+ print(f'original function:\n{func}')# Note we only decompile one function, where the original file may contain multiple functions
88
+ print(f'decompiled function:\n{c_func_decompile}')
89
  ```
90
 
91
  ### 4. License