--- tags: - causal-lm - qwen - fine-tuned - quantized - mnlp --- # Qwen3-0.6B Full-Precision + W8A8 Quantized MCQA Model **Repository:** [Kikinoking/MNLP_M2_quantized_model](https://huggingface.co/Kikinoking/MNLP_M2_quantized_model) This is a fine-tuned Qwen-3-0.6B causal-LM, trained on a concatenation of multiple MCQA datasets and then quantized to 8-bit weights and activations using the compressed-tensors format. It is designed for multiple-choice QA tasks, evaluated with the LightEval EPFL MNLP suite. --- ## Model Details - **Base architecture:** Qwen-3 (0.6B parameters) - **Pretrained checkpoint:** `Qwen/Qwen3-0.6B-Base` - **Fine-tuning data sources:** - ScienceQA - QASC - OpenBookQA - MathQA - CommonsenseQA - MCQA prompts generated via ChatGPT (labeled `M1_chatgpt`) - **Dataset split:** 95% train / 5% validation - **Tokenization:** - `AutoTokenizer.from_pretrained("Qwen/Qwen3-0.6B-Base")` - Left padding, EOS token as pad_token - Sequence length capped at 2048 tokens --- ## Quantization - **Method:** `compressed-tensors` / `naive-quantized` - **Precision:** 8-bit weights + 8-bit activations - **Layers kept in FP32:** Language modeling head - **Checkpoint:** Compatible with CPU and GPU inference --- ## Evaluation Tested using LightEval EPFL MNLP on the MCQA task: ```bash lighteval accelerate --eval-mode lighteval --save-details --override-batch-size 8 --custom-tasks community_tasks/mnlp_mcqa_evals.py --output-dir out/lighteval_quant model_configs/quantized_model.yaml "community|mnlp_mcqa_evals|0|0" Results: Accuracy: 0.30 ± 0.15 Normalized Accuracy: 0.30 ± 0.15 How to Use from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained( "Kikinoking/MNLP_M2_quantized_model", trust_remote_code=True ) model = AutoModelForCausalLM.from_pretrained( "Kikinoking/MNLP_M2_quantized_model", trust_remote_code=True, device_map="auto", ) License Being a 0.6B-parameter model, it may struggle with very long or ambiguous queries. Quantization can introduce a slight drop in accuracy (~5–10%). License: CC BY-NC 4.0 (inherits from the base Qwen-3 license)