--- license: mit datasets: - detection-datasets/coco --- # Introduction This repository stores the model for YOLOv4, compatible with Kalray's neural network API.
Please see www.github.com/kalray/kann-model-zoo for details and proper usage [WIKI](https://github.com/kalray/kann-model-zoo/wiki).
# Contents - ONNX: yolov4.onnx, yolov4-tiny.onnx # Lecture note reference + YOLOv4: Optimal Speed and Accuracy of Object Detection, https://arxiv.org/pdf/2004.10934.pdf # Repository or links references - [github: Pytorch YOLOv4](https://github.com/WongKinYiu/PyTorch_YOLOv4): weights: https://github.com/WongKinYiu/PyTorch_YOLOv4/releases/download/weights/yolov4.weights - [github: Scaled YOLOv4](https://github.com/WongKinYiu/ScaledYOLOv4/tree/yolov4-tiny): weights: https://github.com/WongKinYiu/ScaledYOLOv4/releases/download/weights/yolov4-tiny.weights BibTeX entry and citation info ``` @misc{bochkovskiy2020yolov4, title={YOLOv4: Optimal Speed and Accuracy of Object Detection}, author={Alexey Bochkovskiy and Chien-Yao Wang and Hong-Yuan Mark Liao}, year={2020}, eprint={2004.10934}, archivePrefix={arXiv}, primaryClass={cs.CV} } @InProceedings{Wang_2021_CVPR, author = {Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark}, title = {{Scaled-YOLOv4}: Scaling Cross Stage Partial Network}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2021}, pages = {13029-13038} } @inproceedings{wang2020cspnet, title={{CSPNet}: A New Backbone That Can Enhance Learning Capability of {CNN}}, author={Wang, Chien-Yao and Mark Liao, Hong-Yuan and Wu, Yueh-Hua and Chen, Ping-Yang and Hsieh, Jun-Wei and Yeh, I-Hau}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops}, pages={390--391}, year={2020} } ``` Author: Quentin Muller