kdizzled commited on
Commit
37f78df
·
verified ·
1 Parent(s): eb84375

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. config.json +1 -2
  2. model.safetensors +1 -1
  3. training_args.txt +2 -2
config.json CHANGED
@@ -1,5 +1,4 @@
1
  {
2
- "_name_or_path": "microsoft/codebert-base",
3
  "architectures": [
4
  "RobertaModel"
5
  ],
@@ -21,7 +20,7 @@
21
  "pad_token_id": 1,
22
  "position_embedding_type": "absolute",
23
  "torch_dtype": "float32",
24
- "transformers_version": "4.48.0",
25
  "type_vocab_size": 1,
26
  "use_cache": true,
27
  "vocab_size": 50265
 
1
  {
 
2
  "architectures": [
3
  "RobertaModel"
4
  ],
 
20
  "pad_token_id": 1,
21
  "position_embedding_type": "absolute",
22
  "torch_dtype": "float32",
23
+ "transformers_version": "4.50.0",
24
  "type_vocab_size": 1,
25
  "use_cache": true,
26
  "vocab_size": 50265
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dbc18fdc0fd9d3708b28278dc5562a70c5b096aec21c9987ab42f10e4e68edfa
3
  size 498604904
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86765e84432693b35e89473e7909de8421ba5a33562964d0d974a4bbfb302bcd
3
  size 498604904
training_args.txt CHANGED
@@ -1,5 +1,5 @@
1
- step = 3
2
  _metadata = ContainerMetadata(ref_type=typing.Any, object_type=<class 'dict'>, optional=True, key=None, flags={}, flags_root=False, resolver_cache=defaultdict(<class 'dict'>, {}), key_type=typing.Any, element_type=typing.Any)
3
  _parent = None
4
  _flags_cache = {'struct': None}
5
- _content = {'project_name': 'coq-theorem-embedding', 'experiment_name': 'infonce-file-final-1', 'log_level': 'INFO', 'dataset_path': './data/imm/', 'rankin_ds_path_statements': './data/imm/basic/Events_statements.json', 'rankin_ds_path_references': './validationSet/reference_premises.json', 'samples_from_single_anchor': 10, 'train_split': 0.8, 'val_split': 0.2, 'test_split': 0.0, 'model_name': 'microsoft/codebert-base', 'max_seq_length': 128, 'embedding_dim': 768, 'margin': 0.25, 'threshold_pos': 0.3, 'threshold_neg': 0.65, 'threshold_hard_neg': 0.45, 'k_negatives': 4, 'output_dir': './checkpoints/', 'steps': 100000, 'eval_steps': 200, 'evaluate_freq': 100, 'save_freq': 3, 'batch_size': 32, 'warmup_ratio': 0.1, 'learning_rate': 4e-06, 'random_seed': 52, 'wandb': {'enabled': True, 'project': 'coq-embeddings', 'entity': 'kozyrev-andreiii2016', 'tags': ['baseline', 'triplet']}, 'evaluation': {'k_values': [15], 'f_score_beta': 1, 'query_size_in_eval': 20}}
 
1
+ step = 16500
2
  _metadata = ContainerMetadata(ref_type=typing.Any, object_type=<class 'dict'>, optional=True, key=None, flags={}, flags_root=False, resolver_cache=defaultdict(<class 'dict'>, {}), key_type=typing.Any, element_type=typing.Any)
3
  _parent = None
4
  _flags_cache = {'struct': None}
5
+ _content = {'project_name': 'coq-theorem-embedding', 'experiment_name': 'infonce-file-final-1', 'log_level': 'INFO', 'dataset': {'dataset_path': './data/', 'rankin_ds_path_statements': './data/imm/basic/Events_statements.json', 'rankin_ds_path_references': './validationSet/reference_premises.json', 'samples_from_single_anchor': 150, 'train_split': 0.8, 'val_split': 0.2, 'test_split': 0.0}, 'base_model_name': 'microsoft/codebert-base', 'max_seq_length': 128, 'embedding_dim': 768, 'threshold_pos': 0.3, 'threshold_neg': 0.65, 'threshold_hard_neg': 0.45, 'k_negatives': 4, 'steps': 30000, 'batch_size': 32, 'warmup_ratio': 0.1, 'learning_rate': 4e-06, 'random_seed': 52, 'wandb': {'enabled': True, 'project': 'coq-embeddings', 'entity': 'kozyrev-andreiii2016', 'tags': ['dyn-lr', 'InfoNCE', 'hard-negatives', 'codebert']}, 'evaluation': {'output_dir': './checkpoints/', 'save_freq': 300, 'eval_steps': 200, 'evaluate_freq': 100, 'k_values': [5, 10], 'f_score_beta': 1, 'query_size_in_eval': 20}}