tmp
/
pip-install-ghxuqwgs
/numpy_78e94bf2b6094bf9a1f3d92042f9bf46
/doc
/source
/reference
/routines.linalg.rst
.. _routines.linalg: | |
Linear algebra (:mod:`numpy.linalg`) | |
************************************ | |
.. currentmodule:: numpy | |
Matrix and vector products | |
-------------------------- | |
.. autosummary:: | |
:toctree: generated/ | |
dot | |
vdot | |
inner | |
outer | |
tensordot | |
einsum | |
linalg.matrix_power | |
kron | |
Decompositions | |
-------------- | |
.. autosummary:: | |
:toctree: generated/ | |
linalg.cholesky | |
linalg.qr | |
linalg.svd | |
Matrix eigenvalues | |
------------------ | |
.. autosummary:: | |
:toctree: generated/ | |
linalg.eig | |
linalg.eigh | |
linalg.eigvals | |
linalg.eigvalsh | |
Norms and other numbers | |
----------------------- | |
.. autosummary:: | |
:toctree: generated/ | |
linalg.norm | |
linalg.cond | |
linalg.det | |
linalg.matrix_rank | |
linalg.slogdet | |
trace | |
Solving equations and inverting matrices | |
---------------------------------------- | |
.. autosummary:: | |
:toctree: generated/ | |
linalg.solve | |
linalg.tensorsolve | |
linalg.lstsq | |
linalg.inv | |
linalg.pinv | |
linalg.tensorinv | |
Exceptions | |
---------- | |
.. autosummary:: | |
:toctree: generated/ | |
linalg.LinAlgError | |
Linear algebra on several matrices at once | |
------------------------------------------ | |
Several of the linear algebra routines listed above are able to | |
compute results for several matrices at once, if they are stacked into | |
the same array. | |
This is indicated in the documentation via input parameter | |
specifications such as ``a : (..., M, M) array_like``. This means that | |
if for instance given an input array ``a.shape == (N, M, M)``, it is | |
interpreted as a "stack" of N matrices, each of size M-by-M. Similar | |
specification applies to return values, for instance the determinant | |
has ``det : (...)`` and will in this case return an array of shape | |
``det(a).shape == (N,)``. This generalizes to linear algebra | |
operations on higher-dimensional arrays: the last 1 or 2 dimensions of | |
a multidimensional array are interpreted as vectors or matrices, as | |
appropriate for each operation. | |