File size: 16,027 Bytes
8b2d8a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
---
base_model: bigcode/starencoder
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: classifier-llama3-typescript-500k
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# classifier-llama3-typescript-500k

This model is a fine-tuned version of [bigcode/starencoder](https://huggingface.co/bigcode/starencoder) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3169
- Precision: 0.7165
- Recall: 0.3667
- F1 Macro: 0.4017
- Accuracy: 0.6556
- F1 Binary Minimum3: 0.5559
- F1 Binary Minimum2: 0.9293

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 256
- seed: 0
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 128
- total_eval_batch_size: 2048
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 30

### Training results

| Training Loss | Epoch   | Step   | Validation Loss | Precision | Recall | F1 Macro | Accuracy | F1 Binary Minimum3 | F1 Binary Minimum2 |
|:-------------:|:-------:|:------:|:---------------:|:---------:|:------:|:--------:|:--------:|:------------------:|:------------------:|
| No log        | 0       | 0      | 4.5438          | 0.0358    | 0.2    | 0.0607   | 0.1788   | 0                  | 0                  |
| 0.3468        | 0.2960  | 1000   | 0.3515          | 0.4698    | 0.3119 | 0.3243   | 0.6325   | 0.4623             | 0.9243             |
| 0.3432        | 0.5921  | 2000   | 0.3465          | 0.5149    | 0.3365 | 0.3559   | 0.6356   | 0.5743             | 0.9252             |
| 0.345         | 0.8881  | 3000   | 0.3374          | 0.5098    | 0.3361 | 0.3564   | 0.6431   | 0.5591             | 0.9264             |
| 0.3487        | 1.1841  | 4000   | 0.3350          | 0.5081    | 0.3339 | 0.3557   | 0.6438   | 0.5224             | 0.9265             |
| 0.3461        | 1.4802  | 5000   | 0.3331          | 0.5103    | 0.3427 | 0.3673   | 0.6455   | 0.5533             | 0.9269             |
| 0.3193        | 1.7762  | 6000   | 0.3339          | 0.5122    | 0.3453 | 0.3687   | 0.6449   | 0.5696             | 0.9273             |
| 0.3301        | 2.0722  | 7000   | 0.3312          | 0.5107    | 0.3492 | 0.3756   | 0.6472   | 0.5585             | 0.9270             |
| 0.3246        | 2.3683  | 8000   | 0.3411          | 0.5137    | 0.3533 | 0.3783   | 0.6396   | 0.5934             | 0.9260             |
| 0.3301        | 2.6643  | 9000   | 0.3362          | 0.5139    | 0.3530 | 0.3791   | 0.6438   | 0.5876             | 0.9264             |
| 0.3342        | 2.9603  | 10000  | 0.3306          | 0.5019    | 0.3407 | 0.3642   | 0.6462   | 0.5157             | 0.9268             |
| 0.3321        | 3.2564  | 11000  | 0.3287          | 0.5076    | 0.3521 | 0.3796   | 0.6481   | 0.5594             | 0.9275             |
| 0.3434        | 3.5524  | 12000  | 0.3368          | 0.4982    | 0.3309 | 0.3501   | 0.6418   | 0.4749             | 0.9249             |
| 0.3305        | 3.8484  | 13000  | 0.3297          | 0.5043    | 0.3391 | 0.3635   | 0.6467   | 0.5192             | 0.9266             |
| 0.3187        | 4.1445  | 14000  | 0.3274          | 0.5044    | 0.3480 | 0.3751   | 0.6483   | 0.5470             | 0.9266             |
| 0.3252        | 4.4405  | 15000  | 0.3323          | 0.5137    | 0.3585 | 0.3864   | 0.6449   | 0.5870             | 0.9273             |
| 0.3316        | 4.7365  | 16000  | 0.3275          | 0.5032    | 0.3458 | 0.3716   | 0.6485   | 0.5302             | 0.9270             |
| 0.3362        | 5.0326  | 17000  | 0.3305          | 0.4999    | 0.3403 | 0.3641   | 0.6452   | 0.5011             | 0.9265             |
| 0.3256        | 5.3286  | 18000  | 0.3257          | 0.5044    | 0.3489 | 0.3755   | 0.6496   | 0.5446             | 0.9277             |
| 0.3392        | 5.6246  | 19000  | 0.3291          | 0.4991    | 0.3463 | 0.3717   | 0.6474   | 0.5152             | 0.9266             |
| 0.3264        | 5.9207  | 20000  | 0.3259          | 0.5120    | 0.3466 | 0.3738   | 0.6493   | 0.5481             | 0.9278             |
| 0.3303        | 6.2167  | 21000  | 0.3251          | 0.5138    | 0.3512 | 0.3802   | 0.6496   | 0.5513             | 0.9280             |
| 0.3296        | 6.5127  | 22000  | 0.3286          | 0.4984    | 0.3449 | 0.3698   | 0.6471   | 0.5119             | 0.9263             |
| 0.3291        | 6.8088  | 23000  | 0.3324          | 0.5159    | 0.3661 | 0.3953   | 0.6461   | 0.5937             | 0.9279             |
| 0.3222        | 7.1048  | 24000  | 0.3245          | 0.5127    | 0.3517 | 0.3806   | 0.6506   | 0.5544             | 0.9276             |
| 0.3292        | 7.4008  | 25000  | 0.3251          | 0.5130    | 0.3568 | 0.3867   | 0.6505   | 0.5573             | 0.9281             |
| 0.32          | 7.6969  | 26000  | 0.3245          | 0.5117    | 0.3585 | 0.3888   | 0.6505   | 0.5614             | 0.9285             |
| 0.3318        | 7.9929  | 27000  | 0.3243          | 0.5097    | 0.3504 | 0.3789   | 0.6507   | 0.5360             | 0.9276             |
| 0.3305        | 8.2889  | 28000  | 0.3237          | 0.5109    | 0.3536 | 0.3832   | 0.6502   | 0.5494             | 0.9280             |
| 0.3423        | 8.5850  | 29000  | 0.3314          | 0.4979    | 0.3425 | 0.3662   | 0.6464   | 0.4955             | 0.9263             |
| 0.3212        | 8.8810  | 30000  | 0.3236          | 0.5155    | 0.3552 | 0.3846   | 0.6509   | 0.5628             | 0.9285             |
| 0.3211        | 9.1770  | 31000  | 0.3231          | 0.5130    | 0.3581 | 0.3888   | 0.6510   | 0.5587             | 0.9283             |
| 0.3362        | 9.4731  | 32000  | 0.3238          | 0.5080    | 0.3541 | 0.3836   | 0.6506   | 0.5315             | 0.9280             |
| 0.3305        | 9.7691  | 33000  | 0.3261          | 0.5054    | 0.3471 | 0.3737   | 0.6498   | 0.5115             | 0.9277             |
| 0.3185        | 10.0651 | 34000  | 0.3232          | 0.5152    | 0.3571 | 0.3872   | 0.6520   | 0.5640             | 0.9284             |
| 0.3347        | 10.3612 | 35000  | 0.3255          | 0.5044    | 0.3511 | 0.3787   | 0.6505   | 0.5154             | 0.9277             |
| 0.3293        | 10.6572 | 36000  | 0.3262          | 0.7152    | 0.3651 | 0.3969   | 0.6487   | 0.5816             | 0.9283             |
| 0.3291        | 10.9532 | 37000  | 0.3256          | 0.5181    | 0.3615 | 0.3918   | 0.6497   | 0.5804             | 0.9281             |
| 0.3221        | 11.2493 | 38000  | 0.3239          | 0.7123    | 0.3637 | 0.3959   | 0.6491   | 0.5714             | 0.9282             |
| 0.3216        | 11.5453 | 39000  | 0.3299          | 0.5013    | 0.3475 | 0.3733   | 0.6481   | 0.4941             | 0.9269             |
| 0.3248        | 11.8413 | 40000  | 0.3219          | 0.5122    | 0.3551 | 0.3854   | 0.6519   | 0.5367             | 0.9283             |
| 0.3285        | 12.1374 | 41000  | 0.3232          | 0.5056    | 0.3540 | 0.3829   | 0.6516   | 0.5265             | 0.9278             |
| 0.3243        | 12.4334 | 42000  | 0.3260          | 0.7169    | 0.3688 | 0.4009   | 0.6493   | 0.5867             | 0.9283             |
| 0.3186        | 12.7294 | 43000  | 0.3220          | 0.7092    | 0.3603 | 0.3923   | 0.6513   | 0.5507             | 0.9282             |
| 0.3316        | 13.0255 | 44000  | 0.3220          | 0.5121    | 0.3544 | 0.3844   | 0.6525   | 0.5347             | 0.9286             |
| 0.3157        | 13.3215 | 45000  | 0.3217          | 0.5100    | 0.3602 | 0.3910   | 0.6528   | 0.5548             | 0.9285             |
| 0.3211        | 13.6175 | 46000  | 0.3226          | 0.7178    | 0.3622 | 0.3940   | 0.6524   | 0.5755             | 0.9285             |
| 0.3249        | 13.9136 | 47000  | 0.3235          | 0.7053    | 0.3576 | 0.3887   | 0.6516   | 0.5287             | 0.9281             |
| 0.3226        | 14.2096 | 48000  | 0.3211          | 0.7134    | 0.3587 | 0.3907   | 0.6522   | 0.5586             | 0.9279             |
| 0.326         | 14.5056 | 49000  | 0.3208          | 0.7141    | 0.3632 | 0.3958   | 0.6535   | 0.5641             | 0.9284             |
| 0.3211        | 14.8017 | 50000  | 0.3293          | 0.5021    | 0.3460 | 0.3722   | 0.6483   | 0.4897             | 0.9271             |
| 0.3232        | 15.0977 | 51000  | 0.3207          | 0.7174    | 0.3632 | 0.3968   | 0.6536   | 0.5650             | 0.9290             |
| 0.3232        | 15.3937 | 52000  | 0.3200          | 0.5125    | 0.3592 | 0.3901   | 0.6548   | 0.5483             | 0.9291             |
| 0.3248        | 15.6898 | 53000  | 0.3224          | 0.5108    | 0.3540 | 0.3835   | 0.6526   | 0.5195             | 0.9287             |
| 0.3132        | 15.9858 | 54000  | 0.3216          | 0.5151    | 0.3634 | 0.3944   | 0.6528   | 0.5765             | 0.9287             |
| 0.3235        | 16.2818 | 55000  | 0.3216          | 0.7181    | 0.3698 | 0.4042   | 0.6526   | 0.5777             | 0.9289             |
| 0.3253        | 16.5779 | 56000  | 0.3230          | 0.5082    | 0.3527 | 0.3815   | 0.6523   | 0.5142             | 0.9283             |
| 0.3185        | 16.8739 | 57000  | 0.3200          | 0.5145    | 0.3576 | 0.3884   | 0.6540   | 0.5569             | 0.9285             |
| 0.3268        | 17.1699 | 58000  | 0.3201          | 0.7159    | 0.3691 | 0.4037   | 0.6538   | 0.5689             | 0.9291             |
| 0.3191        | 17.4660 | 59000  | 0.3207          | 0.7187    | 0.3696 | 0.4042   | 0.6543   | 0.5763             | 0.9288             |
| 0.318         | 17.7620 | 60000  | 0.3194          | 0.7146    | 0.3598 | 0.3922   | 0.6544   | 0.5493             | 0.9288             |
| 0.3049        | 18.0580 | 61000  | 0.3196          | 0.7099    | 0.3601 | 0.3931   | 0.6536   | 0.5355             | 0.9287             |
| 0.3298        | 18.3541 | 62000  | 0.3212          | 0.5084    | 0.3563 | 0.3864   | 0.6531   | 0.5300             | 0.9285             |
| 0.3257        | 18.6501 | 63000  | 0.3216          | 0.7201    | 0.3682 | 0.4025   | 0.6528   | 0.5782             | 0.9285             |
| 0.3277        | 18.9461 | 64000  | 0.3188          | 0.7140    | 0.3595 | 0.3920   | 0.6540   | 0.5413             | 0.9291             |
| 0.3187        | 19.2422 | 65000  | 0.3189          | 0.7147    | 0.3654 | 0.3999   | 0.6540   | 0.5593             | 0.9287             |
| 0.319         | 19.5382 | 66000  | 0.3204          | 0.5114    | 0.3550 | 0.3853   | 0.6534   | 0.5199             | 0.9291             |
| 0.3125        | 19.8342 | 67000  | 0.3198          | 0.5149    | 0.3602 | 0.3914   | 0.6553   | 0.5636             | 0.9286             |
| 0.3114        | 20.1303 | 68000  | 0.3185          | 0.5150    | 0.3590 | 0.3903   | 0.6550   | 0.5508             | 0.9289             |
| 0.3163        | 20.4263 | 69000  | 0.3187          | 0.7171    | 0.3688 | 0.4036   | 0.6550   | 0.5685             | 0.9290             |
| 0.3146        | 20.7223 | 70000  | 0.3184          | 0.7171    | 0.3673 | 0.4021   | 0.6556   | 0.5613             | 0.9293             |
| 0.3223        | 21.0184 | 71000  | 0.3203          | 0.5083    | 0.3570 | 0.3869   | 0.6538   | 0.5281             | 0.9287             |
| 0.3209        | 21.3144 | 72000  | 0.3187          | 0.7155    | 0.3700 | 0.4050   | 0.6551   | 0.5671             | 0.9290             |
| 0.3111        | 21.6104 | 73000  | 0.3182          | 0.7131    | 0.3656 | 0.3998   | 0.6552   | 0.5537             | 0.9292             |
| 0.3173        | 21.9065 | 74000  | 0.3187          | 0.7184    | 0.3690 | 0.4050   | 0.6547   | 0.5688             | 0.9290             |
| 0.3304        | 22.2025 | 75000  | 0.3181          | 0.7117    | 0.3628 | 0.3966   | 0.6550   | 0.5463             | 0.9293             |
| 0.3235        | 22.4985 | 76000  | 0.3212          | 0.7214    | 0.3728 | 0.4089   | 0.6542   | 0.5811             | 0.9286             |
| 0.3196        | 22.7946 | 77000  | 0.3179          | 0.7138    | 0.3620 | 0.3959   | 0.6550   | 0.5459             | 0.9290             |
| 0.3089        | 23.0906 | 78000  | 0.3193          | 0.7196    | 0.3730 | 0.4082   | 0.6553   | 0.5781             | 0.9292             |
| 0.3129        | 23.3866 | 79000  | 0.3227          | 0.6800    | 0.3785 | 0.4156   | 0.6514   | 0.5868             | 0.9288             |
| 0.3149        | 23.6827 | 80000  | 0.3178          | 0.7180    | 0.3658 | 0.4005   | 0.6561   | 0.5608             | 0.9290             |
| 0.3164        | 23.9787 | 81000  | 0.3179          | 0.7176    | 0.3698 | 0.4060   | 0.6557   | 0.5660             | 0.9289             |
| 0.3157        | 24.2747 | 82000  | 0.3195          | 0.7200    | 0.3726 | 0.4089   | 0.6551   | 0.5771             | 0.9290             |
| 0.3144        | 24.5708 | 83000  | 0.3183          | 0.7130    | 0.3612 | 0.3951   | 0.6547   | 0.5369             | 0.9293             |
| 0.3131        | 24.8668 | 84000  | 0.3179          | 0.7146    | 0.3610 | 0.3949   | 0.6553   | 0.5384             | 0.9295             |
| 0.3087        | 25.1628 | 85000  | 0.3172          | 0.7169    | 0.3638 | 0.3982   | 0.6559   | 0.5540             | 0.9294             |
| 0.3227        | 25.4589 | 86000  | 0.3177          | 0.7176    | 0.3733 | 0.4098   | 0.6558   | 0.5698             | 0.9292             |
| 0.3202        | 25.7549 | 87000  | 0.3176          | 0.7184    | 0.3659 | 0.4008   | 0.6555   | 0.5586             | 0.9291             |
| 0.3279        | 26.0509 | 88000  | 0.3176          | 0.7178    | 0.3706 | 0.4071   | 0.6557   | 0.5627             | 0.9293             |
| 0.3212        | 26.3470 | 89000  | 0.3175          | 0.7179    | 0.3668 | 0.4016   | 0.6554   | 0.5638             | 0.9290             |
| 0.3186        | 26.6430 | 90000  | 0.3172          | 0.7150    | 0.3652 | 0.3999   | 0.6559   | 0.5497             | 0.9294             |
| 0.3186        | 26.9390 | 91000  | 0.3171          | 0.7163    | 0.3648 | 0.3996   | 0.6556   | 0.5496             | 0.9293             |
| 0.3133        | 27.2351 | 92000  | 0.3185          | 0.7100    | 0.3618 | 0.3953   | 0.6549   | 0.5324             | 0.9293             |
| 0.3148        | 27.5311 | 93000  | 0.3176          | 0.7187    | 0.3711 | 0.4075   | 0.6561   | 0.5679             | 0.9292             |
| 0.3201        | 27.8271 | 94000  | 0.3170          | 0.7173    | 0.3681 | 0.4033   | 0.6558   | 0.5587             | 0.9293             |
| 0.321         | 28.1231 | 95000  | 0.3173          | 0.7141    | 0.3654 | 0.4000   | 0.6556   | 0.5476             | 0.9292             |
| 0.3169        | 28.4192 | 96000  | 0.3171          | 0.7177    | 0.3682 | 0.4034   | 0.6559   | 0.5597             | 0.9294             |
| 0.3231        | 28.7152 | 97000  | 0.3169          | 0.7154    | 0.3651 | 0.3998   | 0.6556   | 0.5523             | 0.9293             |
| 0.3181        | 29.0112 | 98000  | 0.3169          | 0.7164    | 0.3672 | 0.4022   | 0.6556   | 0.5572             | 0.9293             |
| 0.3261        | 29.3073 | 99000  | 0.3173          | 0.7181    | 0.3700 | 0.4063   | 0.6560   | 0.5659             | 0.9291             |
| 0.3181        | 29.6033 | 100000 | 0.3170          | 0.7177    | 0.3695 | 0.4058   | 0.6558   | 0.5615             | 0.9292             |
| 0.3149        | 29.8993 | 101000 | 0.3169          | 0.7165    | 0.3667 | 0.4017   | 0.6556   | 0.5559             | 0.9293             |


### Framework versions

- Transformers 4.43.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1