Holo1-3B / screenspot_eval.py
plcedoz38's picture
Create screenspot_eval.py
6d27086 verified
import argparse
import json
import math
import re
from io import BytesIO
import numpy as np
from datasets import load_dataset
from PIL.Image import Image
from PIL.Image import open as open_img
from tqdm import tqdm
from transformers import AutoModelForImageTextToText, AutoProcessor
from transformers.modeling_utils import PreTrainedModel
from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
from transformers.processing_utils import ProcessorMixin
INSTRUCTION_LOCALIZATION: str = "Localize an element on the GUI image according to my instructions and output a click position as Click(x, y) with x num pixels from the left edge and y num pixels from the top edge."
INSTRUCTION_LOCALIZATION_TOOLCALL: str = "Localize an element on the GUI image according to my instructions and output a click position. You must output a valid JSON format."
def load_screenspot(dataset_id: str, subset: str = "test"):
dataset = load_dataset(dataset_id)
return dataset[subset]
def l1(dx: float, dy: float) -> float:
"""Return L1 length of a vector"""
return abs(dx) + abs(dy)
def l2(dx: float, dy: float) -> float:
"""Return L2 length of a vector"""
return (dx**2 + dy**2) ** 0.5
def point_to_rectangle_dist(x: float, y: float, rectangle: tuple, distance_type="L2"):
"""Compute the distance of a predicted point to the closest edge of the bbox. If the point is in the bbox, then return 0."""
x1, y1, x2, y2 = rectangle # x1,y1 is top-left, x2,y2 is bottom-right
# Check if the point is inside the rectangle
if x1 <= x <= x2 and y1 <= y <= y2:
return 0
# Calculate the closest point on the rectangle
closest_x = max(x1, min(x, x2))
closest_y = max(y1, min(y, y2))
# Calculate the distance
dx = x - closest_x
dy = y - closest_y
if distance_type == "L1":
return l1(dx, dy)
elif distance_type == "L2":
return l2(dx, dy)
else:
raise ValueError("Invalid distance type. Use 'L1' or 'L2'.")
def is_in_bbox(bbox: tuple, x: float, y: float) -> bool:
"""Check if a point is inside a bounding box."""
x_top_left, y_top_left, x_bottom_right, y_bottom_right = bbox
return x_top_left <= x <= x_bottom_right and y_top_left <= y <= y_bottom_right
def assemble_message(image, instruction, use_tool_call: bool = True):
system_message = {
"role": "system",
"content": '[{"name": "click_action", "description": "Click at specific coordinates on the screen.", "parameters": {"additionalProperties": false, "description": "Click at specific coordinates on the screen.", "properties": {"action": {"const": "click", "default": "click", "title": "Action", "type": "string"}, "x": {"description": "The x coordinate, number of pixels from the left edge.", "title": "X", "type": "integer"}, "y": {"description": "The y coordinate, number of pixels from the top edge.", "title": "Y", "type": "integer"}}, "required": ["action", "x", "y"], "title": "ClickAction", "type": "object"}, "strict": true}]',
}
user_message = {
"role": "user",
"content": [
{
"type": "image",
"image": image,
},
{
"type": "text",
"text": f"{INSTRUCTION_LOCALIZATION_TOOLCALL if use_tool_call else INSTRUCTION_LOCALIZATION}\n{instruction}",
},
],
}
messages = [system_message, user_message] if use_tool_call else [user_message]
return messages
def do_smart_resize(image: Image, image_processor: ProcessorMixin) -> tuple[Image, int, int]:
"""Do a QWEN2.5-VL smart resize using parameters of an image-processor"""
resized_height, resized_width = smart_resize(
image.height,
image.width,
factor=image_processor.patch_size * image_processor.merge_size,
min_pixels=image_processor.min_pixels,
max_pixels=image_processor.max_pixels,
)
return image.resize(size=(resized_width, resized_height), resample=None), resized_height, resized_width
def inference(
model: PreTrainedModel, processor: ProcessorMixin, dataset, smart_resize: bool = True, use_toolcall: bool = True
):
"""Gather raw inference results from the model"""
results = []
for i, sample in enumerate(tqdm(dataset, "running inference requests")):
bbox = sample["bbox"]
instruction = sample["instruction"]
image = sample["image"] # this seems to be a pnd , maybe jpg artifacts cause the difference?
image_shape_raw = (image.height, image.width)
message = assemble_message(image=image, instruction=instruction)
# Preparation for inference
if smart_resize:
image, resized_height, resized_width = do_smart_resize(
image=image, image_processor=processor.image_processor
)
else:
resized_height, resized_width = image_shape_raw
text = processor.apply_chat_template(message, tokenize=False, add_generation_prompt=True)
# compress to JPEG, which is needed for highest possible performance
buffer = BytesIO()
image.convert("RGB").save(buffer, format="JPEG", quality=90)
image = open_img(buffer)
inputs = processor(
text=[text],
images=image,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128, do_sample=False)
generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
# print(output_text)
if use_toolcall:
try:
content = json.loads(output_text[0])
prediction_raw = f"Click({content['arguments']['x']}, {content['arguments']['y']})"
except Exception as e:
print(f"Error parsing tool call, using message content instead if available: {repr(e)}")
prediction_raw = output_text[0]
else:
prediction_raw = output_text[0]
results.append(
{
"sample_id": i,
"ground_truth": tuple(bbox),
"prediction_raw": prediction_raw,
"image_shape_raw": image_shape_raw,
"img_shape_processed": (resized_height, resized_width),
}
)
return results
def get_sample_result(result: dict):
"""Postprocess a inference result and compute metrics for this sample."""
raw_height, raw_width = result["image_shape_raw"]
height, width = result["img_shape_processed"]
has_resized_image = height != raw_height or width != raw_width
try:
bbox = result["ground_truth"]
prediction_raw = result["prediction_raw"]
match = re.match(r"Click\((\d+),\s*(\d+)\)", prediction_raw)
assert match is not None
predicted_x = float(match.group(1)) / width
predicted_y = float(match.group(2)) / height
except Exception as e:
sample_metric = {
"sample_id": result["sample_id"],
"has_correct_format": False,
"has_resized_image": has_resized_image,
"click_in_box": False,
"click_l1_dist_to_bbox": 2, # Longest possible L1 distance in the unit square
"click_l2_dist_to_bbox": math.sqrt(2), # Longest possible L2 distance in the unit square
}
sample_metric = {
"sample_id": result["sample_id"],
"has_correct_format": True,
"has_resized_image": has_resized_image,
"click_in_box": True if is_in_bbox(bbox, x=predicted_x, y=predicted_y) else False,
"click_l1_dist_to_bbox": point_to_rectangle_dist(
predicted_x, predicted_y, bbox, "L1"
), # Longest possible L1 distance in the unit square
"click_l2_dist_to_bbox": point_to_rectangle_dist(
predicted_x, predicted_y, bbox, "L2"
), # Longest possible L2 distance in the unit square
}
return sample_metric
def aggregate_metrics(sample_metrics):
"""Aggregate per-sample metrics into metrics for the entire dataset."""
aggregated_metrics = {}
aggregated_metrics["click_accuracy"] = np.mean([r["click_in_box"] for r in sample_metrics])
for threshold in [0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5]:
aggregated_metrics[f"click_accuracy_p{threshold}"] = np.mean(
[r["click_l2_dist_to_bbox"] < threshold for r in sample_metrics]
)
aggregated_metrics["avg_click_l1_dist_to_bbox"] = np.mean([r["click_l1_dist_to_bbox"] for r in sample_metrics])
aggregated_metrics["avg_click_l2_dist_to_bbox"] = np.mean([r["click_l2_dist_to_bbox"] for r in sample_metrics])
aggregated_metrics["format_accuracy"] = np.mean([r["has_correct_format"] for r in sample_metrics])
aggregated_metrics["has_resized_image"] = np.mean([r["has_resized_image"] for r in sample_metrics])
return aggregated_metrics
def evaluate_results(results: list[dict]):
"""Do evaluate based on the raw model outputs."""
per_sample_metrics = []
for result in results:
metric_dict = get_sample_result(result)
per_sample_metrics.append(metric_dict)
aggregated = aggregate_metrics(per_sample_metrics)
return aggregated
def main(
model_id: str = "Hcompany/Holo1-3B",
dataset_id: str = "rootsautomation/ScreenSpot",
outfile: str = "results.json",
use_toolcall: bool = True,
):
model = AutoModelForImageTextToText.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
dataset = load_screenspot(dataset_id)
results = inference(model.cuda(), processor, dataset, use_toolcall=use_toolcall)
metrics = evaluate_results(results)
with open(outfile, "w") as fp:
json.dump(metrics, fp)
for metric, value in metrics.items():
print(f"{metric}:\t{value}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the main function with model and dataset IDs.")
parser.add_argument(
"--model_id",
type=str,
default="Hcompany/Holo1-3B",
help="The identifier for the model to use (default: Hcompany/Holo1-3B)",
)
parser.add_argument(
"--dataset_id",
type=str,
default="rootsautomation/ScreenSpot",
help="The identifier for the dataset to use (default: rootsautomation/ScreenSpot)",
)
parser.add_argument(
"--outfile",
type=str,
default="result.json",
help="Output json-file containing the aggregated metrics.",
)
parser.add_argument(
"--use_toolcall",
type=bool,
default=True,
help="Enable or disable tool call prompting",
)
args = parser.parse_args()
main(model_id=args.model_id, dataset_id=args.dataset_id, outfile=args.outfile, use_toolcall=args.use_toolcall)