--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Facial-Expression-Recognition This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the FER 2013 and AffectNet dataset datasets. It achieves the following results on the evaluation set: Accuracy - 0.922 Loss - 0.213 ### Model Description The vit-face-expression model is a Vision Transformer fine-tuned for the task of facial emotion recognition. It is trained on the FER2013and AffectNet datasets, which consist of facial images categorized into eight different emotions: -anger -contempt -sad -happy -neutral -disgust -fear -surprise ## Model Details The model has been fine-tuned using the following hyperparameters: | Hyperparameter | Value | |-------------------------|------------| | Train Batch Size | 32 | | Eval Batch Size | 64 | | Learning Rate | 2e-4 | | Gradient Accumulation | 2 | | LR Scheduler | Linear | | Warmup Ratio | 0.04 | | Num Epochs | 10 | ## How to Get Started with the Model Example usage: ```python from transformers import AutoImageProcessor, AutoModelForImageClassification, pipeline pipe = pipeline("image-classification", model="HardlyHumans/Facial-expression-detection") processor = AutoImageProcessor.from_pretrained("HardlyHumans/Facial-expression-detection") model = AutoModelForImageClassification.from_pretrained("HardlyHumans/Facial-expression-detection") labels = model.config.id2label outputs = model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() predicted_label = labels[predicted_class_idx] ``` ## Environmental Impact The net estimated CO2 emission using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) scale is around 8.82kg of CO2. - **Developed by:** Hardly Humans club, IIT Dharwad - **Model type:** Vision transformer - **License:** MIT - **Finetuned from model:** google/vit-base-patch16-224-in21k - **Hardware Type:** T4 - **Hours used:** 8+27 - **Cloud Provider:** Google collabotary service - **Compute Region:** South asia-1 - **Carbon Emitted:** 8.82 ### Model Architecture and Objective